令[tex=2.214x1.357]Hm++1ZoLiKyQ3KbBVGtJQg==[/tex]是某个数域[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]上全体次数[tex=1.714x1.071]40EmSXIfMwwTeckzmxdL+A==[/tex]的多项式连同零多项式所组成的向量空间,令[tex=6.714x1.429]5TJX8UFv7zpjoRLvZ3vxJxQ76JQ2KwxJZ22kPKmrhGbnI/7ed5Bm1Ic6GuWto/cJ[/tex]。求出[tex=0.571x0.786]G/buLKOLYVDEKMZ76t752w==[/tex]的最小多项式。
举一反三
- 令[tex=2.214x1.357]Hm++1ZoLiKyQ3KbBVGtJQg==[/tex]表示数域[tex=0.643x1.0]J+LW/0i6Fe+lWEmBUgT8zg==[/tex]上一切次数[tex=1.714x1.071]BwlHQ3JNNEhQfZ3gLod71Q==[/tex]的多项式连同零多项式所组成的向量空间.这个向量空间的维数是几?向量组[tex=11.143x1.571]T8+CJVlZUxAP/r7zuAuPiuFOYvykoOHu61nVGQbWlAakZHlLBOvrGFUeDPyWBuDL[/tex]是不是[tex=2.143x1.357]HzG5EBlJGj4QcjgGRqPngw==[/tex]的基
- 令[tex=2.143x1.0]ZKy48ZoXMq79p+deYyxd3Q==[/tex]是仅含两个元素的域。 [tex=1.786x1.357]2pFrMmryE2cRTmNCb4YNBA==[/tex]是[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]上一元多项式环。找出[tex=1.786x1.357]2pFrMmryE2cRTmNCb4YNBA==[/tex]中一切三次不可约多项式。
- 设 [tex=1.857x1.357]VHvV9DduV1/OkZRTTw1+mg==[/tex] 是数域 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]上的多项式且次数大于 0, 则 [tex=1.857x1.357]VHvV9DduV1/OkZRTTw1+mg==[/tex] 在 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 上不可约的充要条件是: 对 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 上任意适合 [tex=6.357x1.357]+3zmuKty1AhSMDB3tNdbXxLJRZTFKVq4xUmyZwpiyJg=[/tex] 的多项式 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 与 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex], 或者 [tex=4.571x1.357]NaXhQuud9whTIdEia7cAy145H6cmmDHeiC85YWZqPkg=[/tex], 或者 [tex=4.286x1.357]Bjm/GfOl5UoUE3/6/N5Bew62HKPUKuqC0HS8DG8f9D4=[/tex]
- 令[tex=2.143x1.0]ZKy48ZoXMq79p+deYyxd3Q==[/tex]是仅含两个元素的域。 [tex=1.786x1.357]2pFrMmryE2cRTmNCb4YNBA==[/tex]是[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]上一元多项式环。证明,[tex=3.643x1.357]6yBAIp+rQ6nnop6LBJniXw==[/tex]是[tex=1.786x1.357]2pFrMmryE2cRTmNCb4YNBA==[/tex]中唯一的二次不可约多项式。
- 证明:次数>0 且首项系数为 1 的多项式[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]是一个不可约多项式 的充分必要条件是,对任意多项式[tex=1.857x1.357]QPi3lZKJ+q/B5QY5cuDuQg==[/tex]必有(f(x), g(x))=1,或者对某一正整数[tex=6.0x1.357]bR39wf/Hz75eMrt08Xqk8wt4bXTUCgLbWgBjqC5Zmko=[/tex].