2.设$\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,f(x)$存在,$\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,g(x)$不存在,则( )。 A: $\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,[f(x)g(x)]$ 及 $\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{g(x)}{f(x)}$一定都不存在 B: $\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,[f(x)g(x)]$ 及 $\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{g(x)}{f(x)}$一定都存在 C: $\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,[f(x)g(x)]$ 及$\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{g(x)}{f(x)}$中恰有一个存在 D: $\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,[f(x)+g(x)]$ 及 $\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,[f(x)-g(x)]$一定都不存在
2.设$\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,f(x)$存在,$\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,g(x)$不存在,则( )。 A: $\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,[f(x)g(x)]$ 及 $\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{g(x)}{f(x)}$一定都不存在 B: $\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,[f(x)g(x)]$ 及 $\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{g(x)}{f(x)}$一定都存在 C: $\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,[f(x)g(x)]$ 及$\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{g(x)}{f(x)}$中恰有一个存在 D: $\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,[f(x)+g(x)]$ 及 $\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,[f(x)-g(x)]$一定都不存在
5.关于函数极限,给出以下结论:① 若$\underset{x\to 0}{\mathop{\lim }}\,f({{x}^{2}})=A$,则$\underset{x\to 0}{\mathop{\lim }}\,f(x)=A$;② 若$\underset{x\to 0}{\mathop{\lim }}\,f({{x}^{3}})=A$,则$\underset{x\to 0}{\mathop{\lim }}\,f(x)=A$;③ 若$f(x)$是周期函数,且$\underset{x\to 0}{\mathop{\lim }}\,f(x)=A$,则$f(x)\equiv A$;④ 若$f(x)$是周期函数,且$\underset{x\to \infty }{\mathop{\lim }}\,f(x)=A$,则$f(x)\equiv A$。其中正确结论的编号是 A: ① ② B: ③ ④ C: ① ③ D: ② ④
5.关于函数极限,给出以下结论:① 若$\underset{x\to 0}{\mathop{\lim }}\,f({{x}^{2}})=A$,则$\underset{x\to 0}{\mathop{\lim }}\,f(x)=A$;② 若$\underset{x\to 0}{\mathop{\lim }}\,f({{x}^{3}})=A$,则$\underset{x\to 0}{\mathop{\lim }}\,f(x)=A$;③ 若$f(x)$是周期函数,且$\underset{x\to 0}{\mathop{\lim }}\,f(x)=A$,则$f(x)\equiv A$;④ 若$f(x)$是周期函数,且$\underset{x\to \infty }{\mathop{\lim }}\,f(x)=A$,则$f(x)\equiv A$。其中正确结论的编号是 A: ① ② B: ③ ④ C: ① ③ D: ② ④
10. 设函数$f(x)$在$x=a$的某邻域内有定义,则$f(x)$在$x=a$处可导的充分必要条件是()。 A: $\underset{h\to 0}{\mathop{\lim }}\,h(f(a+\frac{1}{h})-f(a))$存在 B: $\underset{h\to 0}{\mathop{\lim }}\,\frac{f(a+2h)-f(a+h)}{h}$存在 C: $\underset{h\to 0}{\mathop{\lim }}\,\frac{f(a)-f(a-h)}{h}$存在 D: $\underset{h\to 0}{\mathop{\lim }}\,\frac{f(a+h)-f(a-h)}{h}$存在
10. 设函数$f(x)$在$x=a$的某邻域内有定义,则$f(x)$在$x=a$处可导的充分必要条件是()。 A: $\underset{h\to 0}{\mathop{\lim }}\,h(f(a+\frac{1}{h})-f(a))$存在 B: $\underset{h\to 0}{\mathop{\lim }}\,\frac{f(a+2h)-f(a+h)}{h}$存在 C: $\underset{h\to 0}{\mathop{\lim }}\,\frac{f(a)-f(a-h)}{h}$存在 D: $\underset{h\to 0}{\mathop{\lim }}\,\frac{f(a+h)-f(a-h)}{h}$存在
5. 若函数$f(x)$在$(a-1,a+1)$上单调,则$\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,f(x)$与$\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,f(x)$()。 A: 都存在且相等 B: 都存在,但不一定相等 C: 至少有一个不存在 D: 都不存在
5. 若函数$f(x)$在$(a-1,a+1)$上单调,则$\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,f(x)$与$\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,f(x)$()。 A: 都存在且相等 B: 都存在,但不一定相等 C: 至少有一个不存在 D: 都不存在
2.极限$\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{x}^{\sin x}}$( )。 A: 等于$1$ B: 等于$0$ C: 等于$-1$ D: 不存在
2.极限$\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{x}^{\sin x}}$( )。 A: 等于$1$ B: 等于$0$ C: 等于$-1$ D: 不存在
Which one of the following set is the domain of the function $y=\sqrt{\arcsin x}$: A: $[-1,1]$ B: $[0,1]$ C: $[0,\frac{\pi }{2}]$ D: $\underset{k\in \mathbb{Z}}{\mathop{\cup }}\,[k\pi ,k\pi +\frac{\pi }{2}]$
Which one of the following set is the domain of the function $y=\sqrt{\arcsin x}$: A: $[-1,1]$ B: $[0,1]$ C: $[0,\frac{\pi }{2}]$ D: $\underset{k\in \mathbb{Z}}{\mathop{\cup }}\,[k\pi ,k\pi +\frac{\pi }{2}]$
设函数$f(x)=\ln (1+x)$.若$f(x)=x\ {f}'(\xi )$ 且 $\xi$介于$0$和$x$之间,则$\underset{x\to 0}{\mathop{\lim }}\,\frac{\xi }{x}=$ A: $1$ B: $2$ C: $\frac{1}{2}$ D: $-\frac{1}{2}$
设函数$f(x)=\ln (1+x)$.若$f(x)=x\ {f}'(\xi )$ 且 $\xi$介于$0$和$x$之间,则$\underset{x\to 0}{\mathop{\lim }}\,\frac{\xi }{x}=$ A: $1$ B: $2$ C: $\frac{1}{2}$ D: $-\frac{1}{2}$
设函数$f(x)$在$x=0$处连续,且$\underset{h\to 0}{\mathop{\lim }}\,\frac{f({{h}^{2}})}{{{h}^{2}}}=1$,则()。 A: $f(0)=0$且${{{f}'}_{-}}(0)$存在 B: $f(0)=1$且${{{f}'}_{-}}(0)$存在 C: $f(0)=0$且${{{f}'}_{+}}(0)$存在 D: $f(0)=1$且${{{f}'}_{+}}(0)$存在
设函数$f(x)$在$x=0$处连续,且$\underset{h\to 0}{\mathop{\lim }}\,\frac{f({{h}^{2}})}{{{h}^{2}}}=1$,则()。 A: $f(0)=0$且${{{f}'}_{-}}(0)$存在 B: $f(0)=1$且${{{f}'}_{-}}(0)$存在 C: $f(0)=0$且${{{f}'}_{+}}(0)$存在 D: $f(0)=1$且${{{f}'}_{+}}(0)$存在
9.下列结论中,错误的是()。 A: 若$f\in C[a,b]$,且$f(a)\lt a,\ f(b)\gt b$,则存在$\xi \in (a,b)$,满足$f(\xi )=\xi $ B: 若$f\in C(-\infty ,a]$,且$f(a)=0$,$\underset{x\to -\infty }{\mathop{\lim }}\,f(x)=0$,则$f(x)$在$(-\infty ,a]$上有正的最大值 C: 方程${{x}^{5}}-3x-1=0$至少有一个根介于$1$和$2$之间 D: 方程$x=a\sin x+b$,其中$a\gt 0,b\gt 0$,至少有一个正根,并且它不大于$a+b$
9.下列结论中,错误的是()。 A: 若$f\in C[a,b]$,且$f(a)\lt a,\ f(b)\gt b$,则存在$\xi \in (a,b)$,满足$f(\xi )=\xi $ B: 若$f\in C(-\infty ,a]$,且$f(a)=0$,$\underset{x\to -\infty }{\mathop{\lim }}\,f(x)=0$,则$f(x)$在$(-\infty ,a]$上有正的最大值 C: 方程${{x}^{5}}-3x-1=0$至少有一个根介于$1$和$2$之间 D: 方程$x=a\sin x+b$,其中$a\gt 0,b\gt 0$,至少有一个正根,并且它不大于$a+b$
下列说法中,与$\underset{n\to \infty }{\mathop{\lim }}\,{{a}_{n}}=A$不等价的是 A: $\forall \varepsilon \gt 0,\ \exists N\in {{\mathbb{N}}^{\text{+}}}$,当$ n \gt N $时,就有$|{{a}_{n}}-A|\lt\sqrt{\varepsilon }$ B: 对任意自然数$k$,都存在正整数${{N}_{k}}$,当$n\gt {{N}_{k}}$时,有$|{{a}_{n}}-A|\lt\frac{1}{{{2}^{k}}}$ C: $\forall \varepsilon \gt 0$,$\exists N\in {{\mathbb{N}}^{\text{+}}}$,只要$n\gt N$,就有$|{{a}_{n}}-A|\lt2\varepsilon $ D: $\forall \varepsilon \gt 0$,$\exists N\in {{\mathbb{N}}^{\text{+}}}$,只要$n\gt N$,就有$|{{a}_{n}}-A|\lt\frac{\varepsilon }{\sqrt{n}}$
下列说法中,与$\underset{n\to \infty }{\mathop{\lim }}\,{{a}_{n}}=A$不等价的是 A: $\forall \varepsilon \gt 0,\ \exists N\in {{\mathbb{N}}^{\text{+}}}$,当$ n \gt N $时,就有$|{{a}_{n}}-A|\lt\sqrt{\varepsilon }$ B: 对任意自然数$k$,都存在正整数${{N}_{k}}$,当$n\gt {{N}_{k}}$时,有$|{{a}_{n}}-A|\lt\frac{1}{{{2}^{k}}}$ C: $\forall \varepsilon \gt 0$,$\exists N\in {{\mathbb{N}}^{\text{+}}}$,只要$n\gt N$,就有$|{{a}_{n}}-A|\lt2\varepsilon $ D: $\forall \varepsilon \gt 0$,$\exists N\in {{\mathbb{N}}^{\text{+}}}$,只要$n\gt N$,就有$|{{a}_{n}}-A|\lt\frac{\varepsilon }{\sqrt{n}}$