• 2022-06-19
     设[tex=0.571x1.0]8Zvs4k1E3PJv6bLQN1OWcg==[/tex],[tex=0.5x1.0]BwbMcfFB7+ux6m5GcvMVvA==[/tex]是素数且[tex=2.286x1.071]bGsEjrC6qqEk3r8qGzYGDQ==[/tex],又群[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]是[tex=0.571x1.0]8Zvs4k1E3PJv6bLQN1OWcg==[/tex]阶群,群[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]是[tex=0.5x1.0]BwbMcfFB7+ux6m5GcvMVvA==[/tex]阶群,[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]过[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]的扩张,试证:如果[tex=5.929x1.357]1uGO9Y4tOl3vBhn+zjHp1DssvQNoLxyI7z6Qgv5ngog=[/tex],则存在[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]过[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]的非平凡扩张[tex=0.786x1.0]4swj+MXBfXw/BCBdKDogfg==[/tex],此时[tex=0.786x1.0]4swj+MXBfXw/BCBdKDogfg==[/tex]为非交换群。
  • 证明:设[tex=2.786x1.357]ws3jAIv5VMTqEbyL1CtXYtCBFrzsqOxguiTJ2/w0rDk=[/tex]是[tex=0.5x1.0]jedlXyMYwmfVwxRj2j9sSw==[/tex]阶群,因为[tex=3.571x1.214]+9Dk4/Bra2rUoqcekOvv+Q==[/tex],取[tex=5.929x1.357]V1tSjW/2RCP4sC3hvcxnn9lrcfupwxDlw3EI/O52yFk=[/tex],[tex=6.286x1.357]W0tTuTx/+tuwwzyp+wrD+IdD9U5oibgQqibSxi8QjsU=[/tex],于是[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]到[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]的映射[tex=0.643x0.786]KFl4ILVOU0DB1zdU6Y+zcg==[/tex]:[tex=4.643x1.571]MSEVjoPQqqD2ubQUOQkQrC5z0+vP38n5h6hOHueak2WycGKXoonk0X9yi2co8wFf[/tex]确定[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]的一个非平凡的自同构,注意[tex=3.857x1.643]yDWjCtUnctLcp/+VvMKbPtQG6C45L09mZOnDyLd+rFU=[/tex],因此[tex=0.643x0.786]hlJJ6/DUY+n2/FE6M2JdRA==[/tex]是[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 的一个[tex=0.571x1.0]FGGpnaR8m8C48rN8O0c7aw==[/tex]阶自同构,令[tex=3.0x1.357]nwmF02fo5cJO4I2Xp9MlbBA6Qe5NGt/XQVFig3AN1GE=[/tex],在[tex=9.5x1.571]499VqFwCXPhDhbheOsvlzMXGZ03TiSJv5e/DFqfLWhizlXtsMGayzL3V8/3ikHH7Pt6JJO/sY4FK31sHekzrYA==[/tex]中定义乘法:[tex=14.0x1.357]XijiX9U1p2zfOblnUt+T3XGsFVgzBeIbfTaHK8Tn3IgRd16Nz1v5Fs8oyWEhhs9bT5gKMRQVaT3ujA75lH3oppl/jg3akrvw4xBrmkcBNg2OakxVVUA+lqA547hnDxT6aiMOmt/z/Qfh1xD130cTUrBmDsL0ltEVPd9Z3sDwsZsDdPkHM+gddQk9EHCTD3sK[/tex],[tex=4.857x1.214]93BAs6LefLC4KQ9GtKl/OLhAU+EDQCLIOnSirfFeT7qCwn3b/FhJhjFQv2jsrbaE[/tex];[tex=4.0x1.214]VoZ66AwD9L72xklV8u+jyNnkf6PQppCNYYxBFeyQuHg=[/tex]。注意[tex=17.643x1.357]djQAh1tNE0Ku9NNF54OfapFcrbLpmQhiPtsaTX1uSmGxbPK2cc87BkPlFLKNxPs4iq0/6umBYkraEUIF/MJ6x9D15xKeAS30G31LyuM38JLWA++rALCnpY82ayoUWLIasrEn4RaVEQOU+t2mLEB7tkvb94WklP8kreBwRmRDH2zT3uFcOQEcLUsPgmK3CllOUXiXLSwHtbS+RBNWXgXwKg==[/tex],[tex=22.786x1.357]/4mTxavG0v9qOJ/xzm3iumh+Lj4OHxqQu7jc9gpjWy7UJ6jlF70Tb3SJsI8bI2jKCGCbvw3hHVc7kC1EEToW0h0Y/Mniqyg74XcYB01yqanNi3wORaTLZxlbC2xSkcAyjWXUBnwG9vBKqZFDWw7qr+42orpHm8/FCEnltKGEg3psi4Yr0EhseNWgyEtE0fM2cAK9yL3Ylq8vpgtE+Mo9/oSs7aOy5gpS95mS4x8UjUdJa3RNUh2yTbroo/3WCt3TCDr9rjPHKXkIMuV3iCa15vW9UeJnCJqYyhEg+zsFFdSDrg394uSKZZerjJs6PeG/[/tex][tex=11.071x1.357]tewwR0h3TBG70lJcWVcRByVJw3xbGYBGd0nNBQFmKiMTyv4ycpkju+iiCTXGE5Ey27jywGR7YFwKt0eLp/xk8T7vQXehxgnl+1pEkUZpT/SKmJw+QfGoxHB26KXC88RBP+NF+dgRt3b/6yuP+VZbXA==[/tex][tex=14.286x1.571]XijiX9U1p2zfOblnUt+T3XGsFVgzBeIbfTaHK8Tn3IgWmw8pOqSUi8X6pygI2gULqhAPI0z/zpp8627sRpT5lKkh4INcXG+gYLj8nstK/MjolzsZ5mX2E2HWaf6nCQvhE6Ym59hOqIyB/VFqX7v7z1AA+8BWqZVKMos8O7kRHOzlSWYubZ/zOBHuO70wygfx[/tex],于是[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是群,[tex=9.5x1.357]4zA3PBev+NHI1H6xhqg4kx74tDrVyPaYR1jWCrz92AvdrVSPz2+ChMsjHGTdPBENbVzwJKFjp02mY+sPJHA2a/7DRUptrlNBXsPloPgRk68=[/tex]是[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的正规子群且与[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]同构,[tex=9.0x1.357]SuTU9psx2q+olNsHOlhItNnR8xDmMhJkspUZzqEWTA2nwqFpHSr+ePzMwR0S/t39CVGDMcSyVxZHGJIUiRgRoIjAiHrsjC3lD5Z5KabZxkw=[/tex]是[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的子群与[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]同构,[tex=9.143x1.357]orpDPZbgQ9WIqndnbKqBp0I6e61gwhRrmSuYXP4WJ1qZ5q09H73sWW5utmvaVFI7U0A1seotnkj+wWEBFTzhxb7H2wOtJS+vg0RUa5kUkZc=[/tex],[tex=3.786x1.214]ITWrtLiAWB5HJ2P7rnSZOQ==[/tex],再由[tex=17.857x1.5]guL7k45JLy27yvYtkpYMw3iJG89p9u1TYeHHKhCnn/cGIdTrxdkrAeppqD3KzdEU8eIh/NMi0qn4r8K9IaoVlMS4rbAxTLIrekLhuwcNET+3wPxopcQIimuSv5GbUSpjW6Z+U95vp1axfuaNXeNnvEtj+i1JhfVkRMAd+Yk+5zrkAtjqzt5zIDju3KC/SpLK[/tex],知结论成立。

    举一反三

    内容

    • 0

      设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]为同阶方阵,举例说明,“若[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]相似,[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]有相同的特征值”的逆命题不成立。 

    • 1

      设有集合[tex=0.786x1.0]kEam2pLJe4uAYVdcny2W5g==[/tex],[tex=0.786x1.0]EsJDtGYVBcAkNM+hi9jDJg==[/tex],(1)若[tex=3.857x1.143]Q5ZavoZvOi0DoyJTzmDshQ==[/tex],则[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]有什么关系?(2)若[tex=5.357x1.143]nBU3hKCBKUYp1JXsoeMeCA==[/tex],则[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]有什么关系?

    • 2

      设[tex=2.214x1.214]YsxUk3RpCEL54ROD5kt0RJo8Jg3PZ9YFvmPV4aO5za/jW8pAoxQ3l0yVPiczodW7[/tex]为 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶矩阵,下列命题中正确的是 未知类型:{'options': ['若 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 合同,则\xa0[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与\xa0[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 相似\xa0', '若\xa0\xa0[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与\xa0[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]\xa0相似,则\xa0[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与\xa0[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]合同', '若\xa0\xa0[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与\xa0[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]等价,则\xa0[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与\xa0[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]\xa0合同\xa0', '若\xa0\xa0[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与\xa0[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]\xa0合同,则\xa0[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与\xa0[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]等价'], 'type': 102}

    • 3

      设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]是 3 阶方阵,交换[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的第 1 列和第 3 列得到矩阵[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex], 再把[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]的第 1 列乘以非零数[tex=0.571x1.0]rFc/sfAAuCOtzhevhoREeA==[/tex]加到[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]的第 2 列得到矩阵[tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex],求满足[tex=3.071x1.214]3+M19Dh1e/7vmqEyIJFlPw==[/tex]的可逆方阵[tex=0.857x1.214]9OmWE7W041bnoZ/iD5egYg==[/tex].

    • 4

      两个信号 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 与 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 传输到接收站已知[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 错收为[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]的概率为 0.02,[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 错收为[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的概率为0.01而 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 发射的机会是[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 的2倍,求:(1) 收到信号 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的概率(2) 收到信号 [tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]的概率(3) 收到信号[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 而发射的是信号[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]的概率