设[tex=0.571x1.0]8Zvs4k1E3PJv6bLQN1OWcg==[/tex],[tex=0.5x1.0]BwbMcfFB7+ux6m5GcvMVvA==[/tex]是素数且[tex=2.286x1.071]bGsEjrC6qqEk3r8qGzYGDQ==[/tex],又群[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]是[tex=0.571x1.0]8Zvs4k1E3PJv6bLQN1OWcg==[/tex]阶群,群[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]是[tex=0.5x1.0]BwbMcfFB7+ux6m5GcvMVvA==[/tex]阶群,[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]过[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]的扩张,试证:如果[tex=5.929x1.357]1uGO9Y4tOl3vBhn+zjHp1DssvQNoLxyI7z6Qgv5ngog=[/tex],则存在[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]过[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]的非平凡扩张[tex=0.786x1.0]4swj+MXBfXw/BCBdKDogfg==[/tex],此时[tex=0.786x1.0]4swj+MXBfXw/BCBdKDogfg==[/tex]为非交换群。
举一反三
- 设[tex=0.571x1.0]8Zvs4k1E3PJv6bLQN1OWcg==[/tex],[tex=0.5x1.0]BwbMcfFB7+ux6m5GcvMVvA==[/tex]是素数且[tex=2.286x1.071]bGsEjrC6qqEk3r8qGzYGDQ==[/tex],又群[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]是[tex=0.571x1.0]8Zvs4k1E3PJv6bLQN1OWcg==[/tex]阶群,群[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]是[tex=0.5x1.0]BwbMcfFB7+ux6m5GcvMVvA==[/tex]阶群,[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]过[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]的扩张,试证:[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]一定是[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]过[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]的非本质扩张。
- 设事件 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 和 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 互不相容, 且 [tex=8.786x1.357]1A7WHGcU5mWBGzLoAYLD+KtEa2iCYBKvWlFt0IZxoOI=[/tex] ,求以下事件的概率:(1) [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 与 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 中至少有一个发生;(2) [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 和 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 都发生;(3) [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 发生但 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 不发生.
- 设两个相互独立的事件 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 和 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 都不发生的概率为 1 / 9, [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 发生[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 不发生的概率与 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 发生 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 不发生的概率相等,则 [tex=3.0x1.357]PlWNHdSuVTfacbkTVT1WGw==[/tex][input=type:blank,size:6][/input].
- 设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]为同阶方阵,若[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]相似,证明: [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]有相同的特征值。
- 设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]为同阶方阵,若[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]均为实对称矩阵,则“若[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]相似,[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]有相同的特征值”的逆命题成立。