• 2022-06-16
    设[tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex]是域[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]的代数扩张,[tex=5.5x1.214]i+DVPOZZfbtwzlk7qK4ILkQ62wXA4Mgk3sC2GAubzY8=[/tex],对[tex=2.714x1.071]0bIJyKcLSZsDO3hqr0GGng==[/tex],若有整数 [tex=2.357x1.143]zz8NS1GjNDoxWsraai8Azw==[/tex],使[tex=2.643x1.286]7bTA3f8zb6vtxQ53piQ9SGEgF3ovUnAyvZwBkZxxBog=[/tex],则称[tex=0.643x0.786]hlJJ6/DUY+n2/FE6M2JdRA==[/tex]是[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]的纯不可分元素,若[tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex]中每个元素都是[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]上的纯不可分元素,则称[tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex]为[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]的纯不可分扩张,试证:若[tex=2.714x1.071]G2gC+v5EIv9KBIOiR0kaOw==[/tex]在[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]上既是可分的又是纯不可分的,则 [tex=2.0x1.071]fn8qSvoGdKV5LvM1JyIK2g==[/tex]。
  • 举一反三