设[tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex]是域[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]的代数扩张,[tex=5.5x1.214]i+DVPOZZfbtwzlk7qK4ILkQ62wXA4Mgk3sC2GAubzY8=[/tex],对[tex=2.714x1.071]0bIJyKcLSZsDO3hqr0GGng==[/tex],若有整数 [tex=2.357x1.143]zz8NS1GjNDoxWsraai8Azw==[/tex],使[tex=2.643x1.286]7bTA3f8zb6vtxQ53piQ9SGEgF3ovUnAyvZwBkZxxBog=[/tex],则称[tex=0.643x0.786]hlJJ6/DUY+n2/FE6M2JdRA==[/tex]是[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]的纯不可分元素,若[tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex]中每个元素都是[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]上的纯不可分元素,则称[tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex]为[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]的纯不可分扩张,试证:[tex=2.714x1.071]G2gC+v5EIv9KBIOiR0kaOw==[/tex]为[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]上纯不可分元素的充分必要条件是[tex=7.714x1.357]uqh+oOvD2P9iqZ7dD7XO1Fuk9knZU2n9p4bbv27IRcnwfD7BwJiv0LjSKIYmKmzPqodBwdkghwc8egU3OWZ1VA==[/tex]。
举一反三
- 设[tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex]是域[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]的代数扩张,[tex=5.5x1.214]i+DVPOZZfbtwzlk7qK4ILkQ62wXA4Mgk3sC2GAubzY8=[/tex],对[tex=2.714x1.071]0bIJyKcLSZsDO3hqr0GGng==[/tex],若有整数 [tex=2.357x1.143]zz8NS1GjNDoxWsraai8Azw==[/tex],使[tex=2.643x1.286]7bTA3f8zb6vtxQ53piQ9SGEgF3ovUnAyvZwBkZxxBog=[/tex],则称[tex=0.643x0.786]hlJJ6/DUY+n2/FE6M2JdRA==[/tex]是[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]的纯不可分元素,若[tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex]中每个元素都是[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]上的纯不可分元素,则称[tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex]为[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]的纯不可分扩张,试证:若[tex=2.714x1.071]G2gC+v5EIv9KBIOiR0kaOw==[/tex]在[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]上既是可分的又是纯不可分的,则 [tex=2.0x1.071]fn8qSvoGdKV5LvM1JyIK2g==[/tex]。
- 设 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 是可分距离空间, [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 为 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的一个开覆盖,即 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 是一族开集,使得对每个 [tex=2.071x1.071]Q0LLD7UDggt+6n6MtMqlhg==[/tex],有 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 中开集O,使 $[tex=2.071x1.071]R2zofbATWrNVJHHFVRXc6w==[/tex], 证明必可从[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 中选出可数个集组成[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]中一个覆盖.
- 设 [tex=1.857x1.357]VHvV9DduV1/OkZRTTw1+mg==[/tex] 是数域 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]上的多项式且次数大于 0, 则 [tex=1.857x1.357]VHvV9DduV1/OkZRTTw1+mg==[/tex] 在 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 上不可约的充要条件是: 对 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 上任意适合 [tex=6.357x1.357]+3zmuKty1AhSMDB3tNdbXxLJRZTFKVq4xUmyZwpiyJg=[/tex] 的多项式 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 与 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex], 或者 [tex=4.571x1.357]NaXhQuud9whTIdEia7cAy145H6cmmDHeiC85YWZqPkg=[/tex], 或者 [tex=4.286x1.357]Bjm/GfOl5UoUE3/6/N5Bew62HKPUKuqC0HS8DG8f9D4=[/tex]
- 设[tex=0.786x1.0]I/kNMtd8YcgkWCrgriW/hA==[/tex]是域[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]的有限扩张,证明[tex=0.786x1.0]I/kNMtd8YcgkWCrgriW/hA==[/tex]中存在关于[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]的本原元素的充分必要条件是[tex=0.786x1.0]I/kNMtd8YcgkWCrgriW/hA==[/tex]与[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]间只有有限个中间域。
- 设域[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]的特征[tex=2.357x1.214]pbc4vZT08gszjwicRtTRnQ==[/tex],[tex=2.0x1.357]b5RgJKaKKPxfWp6M6XOn8A==[/tex],试求[tex=2.357x1.143]RXPUuGtyMsNdtHsopW2V8w==[/tex]对[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]的群。