设二维随机变量[tex=2.786x1.286]AG5D6gU/evQZlfwisXgzYw==[/tex]的联合分布律为[img=638x116]177b404367b6749.png[/img](1)求关于[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和关于[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]的边缘分布律;(2)[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]与[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]是否相互独立?
举一反三
- 设随机变量[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]都服从[tex=2.143x1.286]dboSCjP3Fn5+xkkJFCNE+A==[/tex]分布,证明: “[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]不相关”与“[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]独立”等价.
- 设二维随机变量[tex=2.786x1.286]AG5D6gU/evQZlfwisXgzYw==[/tex]的联合分布律如表4-10所示.[img=758x260]1796fafa9f2bec2.png[/img]判断[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]与[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]的相关性和独立性.
- 设二维随机向量[tex=2.786x1.286]wsm6hZKLwoHLmpiSvjoPLA==[/tex]的联合概率密度为[tex=11.929x2.429]EPaISH7F+7OFqeEao9lVbWFvFTtp0jw27PSX4ey93+ocil6tIoqQAiW27sY9aEJATysk76yueULO0jcKgcds9A==[/tex](1)求[tex=2.786x1.286]AG5D6gU/evQZlfwisXgzYw==[/tex]分别关于[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]的边缘概率密度[tex=2.5x1.286]uu/ytNPk37vj04MgqWVXSQ==[/tex],[tex=2.429x1.286]vHFsKxNVPoBwN26UxM1ppg==[/tex];(2)判断[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]、[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]是否独立,并说明理由。
- 袋中有5个号码1,2,3,4,5,从中任取3个,记这3个号码中最小的的号码为[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex],最大的号码为[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex] .(1)求[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]的联合分布律;(2)[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]与[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]是否相互独立 .
- 设二维离散随机变量[tex=2.786x1.286]AG5D6gU/evQZlfwisXgzYw==[/tex]的分布列如下表所示。[img=638x102]178fd9f5226a7bf.png[/img]问:[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]与[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]是否独立?