设A为n阶实矩阵,证明:若对于任意n维实列向量a,有a^TAa=0.则A为反对称矩阵
举一反三
- 下列命题不成立的是 A: 设A是n阶矩阵, B: 阶矩阵B,有AB=0,则A=0. C: B.设A是n阶矩阵, D: 阶矩阵B,有BTAB=0,则A=0. E: C.设A是n阶矩阵, F: 维列向量ξ,有Aξ=0,则A=0. G: D.设A是n阶矩阵, H: 维列向量ξ,有ξTAξ=0,则A=0.
- A 为n阶对称矩阵,且对任意n维向量X ,都有,则 A =0 。c70c250c498c857e72c0b616d6e8a447
- A为n阶对称矩阵,且对任意n维向量X,都有[img=149x46]17da6a77863217d.png[/img],则A=0 。
- 下列说法错误的是___。A.()A、B为n阶实对称矩阵,若存在n阶可逆方阵C,使得(),则A()与()B合同;()B.()A为n阶实对称矩阵,且对任意n维向量x,都有(),则A=0;()C.()两个n阶实对称矩阵合同的充分必要条件是它们有相同的秩;()D.()实对称矩阵的秩r和符号差s具有相同的奇偶性
- 设A为n阶方阵,若对任意n维向量X=(x1,x2,…,xn)T都有AX=0.证明:A=0.