函数f(x)=2x3-9x2+12x-3单调减少的区间为______.
A: (-∞,1]
B: [1,2]
C: [2,+∞)
D: [1,+∞)
A: (-∞,1]
B: [1,2]
C: [2,+∞)
D: [1,+∞)
举一反三
- f(x)=2x3-9x2+12x-3的单调增加区间为( )。 A: (A) (1,2) B: (B) (-∞,1) C: (C) (0,+∞) D: (D) (-∞,1)与(2,+∞)
- 求方程组的解,取初值为(1,1,1)。[img=250x164]180333307ab8fde.jpg[/img] A: f=@(x) [x(1)^3+x(2)-x(3)-5; 2*x(1)+3*x(2)^2-6; x(1)+x(2)+x(3)-3];x=fsolve(f,[1,1,1],optimset('Display','off')) B: x=fsolve(@(x) [x(1)^3+x(2)-x(3)-5; 2*x(1)+3*x(2)^2-6; x(1)+x(2)+x(3)-3],[1,1,1]) C: f=@(x) [x(1)^3+x(2)-x(3)-5; 2*x(1)+3*x(2)^2-6; x(1)+x(2)+x(3)-3];x=fzero(f,[1,1,1]) D: x=fzero(@(x) [x(1)^3+x(2)-x(3)-5; 2*x(1)+3*x(2)^2-6; x(1)+x(2)+x(3)-3],[1,1,1])
- 函数y=2x 3 +x 2 -4x+3的单调减少区间是(-1,-2/3)。()
- 已知\(f(x)\)在节点1,2处的函数值为\(f(1) = 2,f(2) = 3\) ,在节点1,2处的导数值为\(f'(1) = 0,f'(2) = - 1\) ,求 f(x) 两点三次埃米特插值多项式 A: \(H(x) = - 3{x^3} + 13{x^2} - 17x + 6\) B: \(H(x) = - 3{x^3} + 13{x^2} - 17x + 3\) C: \(H(x) = - 3{x^3} + 13{x^2} - 17x +7\) D: \(H(x) = - 3{x^3} + 13{x^2} - 17x + 9\)
- 青书学堂: 二次型 f( x 1 , x 2 , x 3 )=2 x 1 2 +5 x 2 2 +5 x 3 2 +4 x 1 x 2 −8 x 2 x 3 ,则 f的矩阵为 。