设[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]在区间[tex=2.643x1.357]6gMkjXUNZb5V+/elDc/XlA==[/tex]内有定义,试证明:(1)[tex=5.714x1.357]iKBHD/GqqQrkCae6tOBK0g==[/tex]为偶函数; (2)[tex=5.286x1.357]uJPSfguiKE8Pz5RARyXAJw==[/tex]为奇函数.
举一反三
- 设函数是定义在对称区间[tex=2.643x1.357]6gMkjXUNZb5V+/elDc/XlA==[/tex]上,证明:定义在对称区间[tex=2.643x1.357]6gMkjXUNZb5V+/elDc/XlA==[/tex]上的任意函数可表示为一个奇函数与一个偶函数的和 .
- 设函数是定义在对称区间[tex=2.643x1.357]6gMkjXUNZb5V+/elDc/XlA==[/tex]上,证明:两个偶函数的和是偶函数,两个奇函数的和是奇函数 .
- 设函数是定义在对称区间[tex=2.643x1.357]6gMkjXUNZb5V+/elDc/XlA==[/tex]上,证明:两个偶函数的积是偶函数,两个奇函数的积也是偶函数,偶函数预计函数的积是奇函数 .
- 设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 是定义在对称区间 [tex=2.5x1.357]0Ym3gy2gstdBTE13VS7w2A==[/tex] 内的任何函数,证明:(1) [tex=8.071x1.357]hhMCpps4XlrpIyuIk0oCoXLOeayK8tprvXbLZP7ly5U=[/tex]是偶函数 ,[tex=8.071x1.357]HUjuAGjbkcjRKSBsPLRw5YIY8B2b5XD4ZgbBoWsjfiw=[/tex]是奇函数.(2)定义在区间 [tex=2.5x1.357]0Ym3gy2gstdBTE13VS7w2A==[/tex] 内的任何函数可以表示为一个偶函数与一个奇函数的和.
- 设函数[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]连续,[tex=7.214x2.643]2ZJQOGzPP+WXkSjEhj0ot/8XbWpx0nNxKCDDSnV56LI=[/tex],试证:(1) 若[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]是奇函数,则[tex=2.0x1.357]6D04mYW2ivsCmiBu0E4w8w==[/tex]是偶函数;(2) 若[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]是偶函数,则[tex=2.0x1.357]6D04mYW2ivsCmiBu0E4w8w==[/tex]是奇函数.