设\( A,B \)为\( n \)阶方阵,且\( AB{\rm{ = }}O \) ,则必有( )
A: \( BA{\rm{ = }}O \)
B: \( A{\rm{ = }}O \)或\( B{\rm{ = }}O \)
C: \( A,{\kern 1pt} {\kern 1pt} \,B \)的秩均小于 \( n \)
D: \( \left| A \right| = 0 \)或\( \left| B \right| = 0 \)
A: \( BA{\rm{ = }}O \)
B: \( A{\rm{ = }}O \)或\( B{\rm{ = }}O \)
C: \( A,{\kern 1pt} {\kern 1pt} \,B \)的秩均小于 \( n \)
D: \( \left| A \right| = 0 \)或\( \left| B \right| = 0 \)
举一反三
- 设\( A,\;B \) 均为\( n \) 阶方阵,则必有( ). A: \( {(A + B)^2} = {A^2} + 2AB + {B^2} \) B: \( \left| {A + B} \right| = \left| A \right| + \left| B \right| \) C: \( \left| {AB} \right| = \left| A \right|{\kern 1pt} \left| B \right| \) D: \( {\left( {AB} \right)^{\rm T}} = {A^{\rm T}}{B^{\rm T}} \)
- 设\( A \)为\( n \)阶方阵,则下列命题成立的是( ) A: 若\( {A^2}{\rm{ = }}O \),则 \( A{\rm{ = }}O \) B: 若\( A{A^T}{\rm{ = }}O \),则\( A{\rm{ = }}O \) C: 若\( {A^2} = A \) ,则 \( A{\rm{ = }}O \)或 \( A = E \) D: 若\( A \ne O \) ,则 \( \left| A \right| \ne 0 \)
- 设\( A \) ,\( B \)为\( n \)阶方阵,满足关系 \( AB = O \),则必有( ) A: \( A = B = O \) B: \( A + B = O \) C: \( \left| A \right| = 0 \)或\( \left| B \right| = 0 \) D: \( \left| A \right| + \left| B \right| = 0 \)
- 设`\n`阶方阵`\A`经过初等变换后得方阵`\B`,则 ( ) A: \[\left| {\rm{A}} \right| = \left| {\rm{B}} \right|\] B: \[\left| A \right| \ne \left| B \right|\] C: \[\left| A \right|\left| B \right| \ge {\rm{0}}\] D: 若`\| A| = 0`,则`\| B| = 0`
- 设 \( A,B \)均为 \( n \)阶方阵,则 \( A = O \)的充要条件是( ) A: \( {A^2} = O \) B: \( \left| A \right| = 0 \) C: \( B \ne O \)且\( AB = O \) D: \( \left| B \right| \ne 0 \)且\( AB = O \)