设[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]是定义在实数集上的关系,满足[tex=1.786x1.0]6EK6Izru+O8tcQzdTzeouA==[/tex]当且仅当[tex=1.786x1.143]lHtMEJZP+97urb8JE/dvrw==[/tex]是整数。[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]是等价关系吗?
举一反三
- 设[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]是定义在英文字母组成的字符串的集合上的关系,满足[tex=1.786x1.0]6EK6Izru+O8tcQzdTzeouA==[/tex]当且仅当[tex=3.929x1.357]jabyynOoTwss88s8M1B1ZA==[/tex],其中[tex=1.714x1.357]1cMryjz911rHP7HPP3aLPA==[/tex]是字符串[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex]的长度。[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]是等价关系吗?
- [tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]是集合[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]上的二元关系。对于所有的[tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex]、[tex=0.429x1.0]JThLUuJ8WswSAPiYZWihWg==[/tex]、[tex=0.5x0.786]EL0hSqs6jZBGdsmH7TMShQ==[/tex][tex=1.429x1.071]JKzFuDkw4uDSbAJpO4itXw==[/tex],如果[tex=1.786x1.0]6EK6Izru+O8tcQzdTzeouA==[/tex],[tex=1.643x1.286]sD2I2onCkUOMNhOU9iKq6Q==[/tex],则[tex=1.786x1.0]KUv3qryIM5pVm6APGV8uaA==[/tex],那么称[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]是循环关系。试证明[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]是自反和循环的当且仅当[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]是一等价关系。
- 设[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]是定义在正整数的有序对构成的集合上的关系,[tex=7.571x1.357]Fb0bzBNYH74ptSZ3X5WRWJIj+/cjvqzCS0GtOUGOVKw=[/tex]且仅当[tex=4.286x1.143]4q8HpEAjgXNDbHWlseRxXA==[/tex]。证明[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]是等价关系。
- 设[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]是定义在所有位串集合上的关系,[tex=1.643x1.0]Kqo7xjU3OBYrrdLAfqfD/w==[/tex]当且仅当[tex=0.5x0.786]ICKY+F5VdoSQrRn/wUUOyw==[/tex]和[tex=0.429x0.929]r8lLiDb0KHTzu/2y/Au89w==[/tex]包含相同个数的1,证明[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]是等价关系。
- 设正整数的序偶集合[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex], 在[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]上定义的二元关系[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]如下:[tex=7.214x1.357]CLCeGfyTItBrQgQJTySVTyiGleoWF8kNftOUYIkNP1hVSPAqKSk1GdZTMvbye+bcNbPE579jcQ/sMPYzu7ZsEQ==[/tex]当且仅当[tex=2.929x1.0]qewqoUzb0rIVy7fbmiGxLQ==[/tex]证明:[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]是一个等价关系。