设f(x)=(1+x)cosx,欲使f(x)在x=0处连续,则f(0)定义为()。
A: f(0)=0
B: f(0)=e-1
C: f(0)=1
D: f(0)=e
A: f(0)=0
B: f(0)=e-1
C: f(0)=1
D: f(0)=e
举一反三
- 设函数f(x)具有二阶连续导数,且f(x)>0,f′(0)=0,则函数z=f(x)lnf(y)在点(0,0)处取得极小值的一个充分条件是()。 A: f(0)>1,f″(0)>0 B: f(0)>1,f″(0)<0 C: f(0)<1,f″(0)>0 D: f(0)<1,f″(0)<0
- 设f"(x)连续,f(0)=0,f"(0)=1,则
- 设f(x)可导,F(x)=f(x)(1+|x|),若要使F(x)在x=0处可导,则必有______. A: f(0)=0 B: f(0)=1 C: f"(0)=0 D: f"(0)=1
- 设函数f(x)在[0,1]上连续,在(0,1)内可导,且f"(x)<0,则____ A: f(0)<0 B: f(1)>0 C: f(1)>f(0) D: f(1)<f(0)
- 设函数f(x)在[0,1]上f"(x)>0,则f'(0),f'(1),f(1)-f(0)或f(0)-f(1)的大小顺序是______. A: f'(1)>f'(0)>f(1)-f(0) B: f'(1)>f(1)-f(0)>f'(0) C: f(1)-f(0)>f'(1)>f'(0) D: f'(1)>f(0)-f(1)>f'(0)