设f(x),g(x)在区间[a,b]上连续,且g(x)<f(x)<m,则由曲线y=g(x),y=f(x)及直线X一口,X一6所围成的平面区域绕直线y=m旋转一周所得旋转体体积为( ).
A: π∫ab[2m—f(x)+g(x)][f(x)一g(x)]dx
B: π∫ab[2m一f(x)一g(x)][f(x)一g(x)]dx
C: π∫ab[m一f(x)+g(x)][f(x)一g(x)]dx
D: π∫ab[m一f(x)一g(x)][f(x)一g(x)]dx
A: π∫ab[2m—f(x)+g(x)][f(x)一g(x)]dx
B: π∫ab[2m一f(x)一g(x)][f(x)一g(x)]dx
C: π∫ab[m一f(x)+g(x)][f(x)一g(x)]dx
D: π∫ab[m一f(x)一g(x)][f(x)一g(x)]dx
举一反三
- 设f(x),g(x)在区间[a,b]上连续,且g(x) A: π∫ab[2m-f(x)+g(x)][f(x)-g(x)]dx B: π∫ab[2m-f(x)-g(x)][f(x)-g(x)]dx C: π∫ab[m-f(x)+g(x)][f(x)-g(x)]dx D: π∫ab[m-f(x)-g(x)][f(x)-g(x)]dx
- 在区间(a,b)内,如果f'(x)=g'(x),则必有(). A: f(x)=g(x) B: f(x)=g(x)+C C: ∫f(x)'dx=∫g(x)'dx D: ∫f(x)dx=∫g(x)dx
- "x F(x,y) → ¬ $y G(x,y)的前束范式 A: $x$y(F(x,m) ®Ø G(t,y)) B: $x∀y(F(x,m) ®Ø G(t,y)) C: ∀x$y(F(x,m) ®Ø G(t,y)) D: ∀x$y(F(x,m) ® ØG(t,y))
- 设函数f(x)和g(x)在区间(a,b)内的导函数f′(x)>g′(x),则在(a,b)内一定有( )A、f(x)>g(x)B、f(x)<g(x)C、f(x)+g(a)>g(x)+f(a)D、f(x)+g(b)>g(x)+f(b)
- 设f(X)及g(X)在[a,b]上连续(a<b),证明:(1)若在[a,b]上f(x)>=0,且∫f(x)dx=0,则在[a,b]上f(x)恒等于0(2)若在[a,b]上f(x)>=g(x),且∫f(x)dx=∫g(x)dx,则在[a,b]上f(x)恒等于g(x)