设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]是n阶可逆方阵,将[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的第[tex=0.357x1.286]IAXU2Bqg62H881xvV8eoHw==[/tex]行和第[tex=0.5x1.286]vaguiW6u3ltwNwgVxp69rQ==[/tex]行互换后得到的矩阵记为[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]。(1)证明[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]是可逆矩阵;(2)求[tex=2.5x1.286]QP7+uCY2cBjXFArncz56jg==[/tex]
举一反三
- 设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]是[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶可逆方阵,互换[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]中第[tex=0.357x1.286]IAXU2Bqg62H881xvV8eoHw==[/tex]行和第[tex=0.5x1.286]vaguiW6u3ltwNwgVxp69rQ==[/tex]行得到矩阵[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex],求[tex=2.5x1.286]1v1rcJxXktd38OivzMAXzA==[/tex]。
- 若可逆矩阵[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]作下列变化,则[tex=1.714x1.286]TO1yVSeu6VTkH5eqe0g3AQ==[/tex]相应地有怎样的变化?(1)[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]中[tex=0.357x1.286]IAXU2Bqg62H881xvV8eoHw==[/tex]行与[tex=0.5x1.286]vaguiW6u3ltwNwgVxp69rQ==[/tex]行互换;(2)[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]中[tex=0.357x1.286]IAXU2Bqg62H881xvV8eoHw==[/tex]行乘上非零数[tex=0.571x1.286]pc/qlnA3cxu8Ag9jp3tYHQ==[/tex];(3)[tex=2.071x1.286]6gewx0PIikJyvSQvJcOOfw==[/tex]时,[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]中第[tex=0.5x1.286]vaguiW6u3ltwNwgVxp69rQ==[/tex]行乘上数[tex=0.571x1.286]pc/qlnA3cxu8Ag9jp3tYHQ==[/tex]加到第[tex=0.357x1.286]IAXU2Bqg62H881xvV8eoHw==[/tex]行。
- 设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]是3阶方阵,将[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的第1列与第2列交换得[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex],再把[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]的第2列加到第3列得[tex=0.786x1.286]TKU5UzNEMzEJwORo6mbEYA==[/tex],证明:满足[tex=3.571x1.286]smq8nBov8N20KOfFXb8jGA==[/tex]的可逆矩阵[tex=7.429x3.5]Ag30ceVI6RySe1mN6l8ov4uqsSxDoCoqXEC5KL9xyPbsNpGnL01HfBlMHlEnUUvK+41Gvm2WNVtvUU/YK0Msrlifk/c+0AzxP6kIu+grdWfBVhCNnghcD1Vvfy1arNSW[/tex].
- 证明:(1) 设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex],[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex] 为矩阵,则[tex=4.286x1.286]oheUYwhZ0URiNEpsN7L7kA==[/tex]有意义的充分必要条件是[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex],[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex] 为同阶矩阵。(2) 对任意 [tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶矩阵[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex],[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex] , 都有[tex=6.286x1.286]f9BmKY0KXh740nvID3nNj0fFKPsoX9X3zKZONqYCrR0=[/tex], 其中[tex=0.786x1.286]YggwMQ4w3PxfhkmL0NfgdQ==[/tex]为单位矩阵。
- 设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex], [tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex], [tex=0.786x1.286]TKU5UzNEMzEJwORo6mbEYA==[/tex]都是 [tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex] 阶矩阵,证明:[tex=2.357x1.286]CV5IHDzl71rjlr9NcRxgrg==[/tex]可逆的充分必要条件是[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex], [tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex], [tex=0.786x1.286]TKU5UzNEMzEJwORo6mbEYA==[/tex]都可逆。