设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级实对称矩阵,且[tex=2.714x1.214]/zc0a9MPQ4oEGKimH+/RAw==[/tex],证明:存在正交矩阵[tex=0.643x1.0]awBC2UvU2WxG45VihksPuw==[/tex],使得[tex=10.857x2.786]A0kKdxo07FUl2M/TGVEn/bKOd9Y/uvadsj+X8kV2IBQ35aVTT+ZfSZkz4wgMgapNu0qL5hi5afO6PfMrpwAZWrcYUJOQVsKs9CUreLKLuN8=[/tex]
举一反三
- 设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级实对称矩阵,且[tex=2.714x1.214]4L/EWHoLeKVwR1IkyZAsSQ==[/tex],证明存在正交矩阵[tex=0.643x1.0]awBC2UvU2WxG45VihksPuw==[/tex]使得[tex=17.786x8.214]A0kKdxo07FUl2M/TGVEn/Q4WlKKkWsJ7hxkqYfGqrtNFI5df/GPEBc0LIxHR4XxPNNzWZfmwb97funI5B470vvJ1XpdW9i4UQUnqHOf4nd74lyMEaJYi+pjQBTpOcjg8Ybt09W+YfPMJL0X2CMk0opZljnYSOMJz0HTfQtFrT2k+cEL8BdAkoWJ/6FyyTIaGWwfteT3rKk8BiZ1xe0+FDP4DvUuO+xEmZEDPp61/3wfHIVx5I1es+/rIcqHcaBJ553CLrA6Z1DnaumvE986cj2FLEAd7CzngmRZdSQM2e18FAnXIrTB+ILTst6Q06peg[/tex]
- 1) 设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]为一个[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级实矩阵,且[tex=3.143x1.357]jmW/UUDE3QEpfgsRbhrpUQ==[/tex],证明[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]可以分解成[tex=2.929x1.214]uD+loi5Ndfk9oRNW/S/5NQ==[/tex],其中[tex=0.857x1.214]ChdusW5rAupjge6v/DGHRA==[/tex]是正交矩阵,[tex=0.643x1.0]awBC2UvU2WxG45VihksPuw==[/tex]是一上三角矩阵:[tex=11.929x5.214]iuUhbPg6vGulP+tV2jtZCP8+fINWUOIBYuhILpF13bHy9K9vDpLieRMmpJ2zXt8P5WCwasrT/bhcftZoCydNQZIOF7QAOG8nKDGlYVlVFS54B9tzoOGOGxyZgBkYZKT5OnS6JJpBj7JGFgdTqbS50rB+DFhsxIR915FwxDxWhHkJ5lMjbTLvYpXJ8yVK3iPlHHeABZTdtvP4bnsEbOnI5ErWaTEb143EPJ88etS7vqJ6ismRUFCfZSGkgEeAhnIr[/tex]且[tex=9.071x1.357]o9hjoulZVyyj8haoQFJu/v9xY8hJWIQTjSsa3f/uF9M=[/tex],并证明这个分解是惟一的;2) 设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级正定矩阵,证明存在一上三角矩阵[tex=0.643x1.0]awBC2UvU2WxG45VihksPuw==[/tex],使[tex=3.071x1.143]0jLtcygfwX7LHdfUusxcIQ==[/tex].
- 设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]是[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级实对称矩阵(Hermite 矩阵),证明:存在[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级实对称矩阵(Hermite 矩阵)[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex],使得[tex=2.786x1.214]Y85dKqgwVuG4ThFN4REjCg==[/tex]。
- 是 [tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级实对称矩阵,且 [tex=2.714x1.214]Ii7rpTBIBY9OnoDCpl0kqg==[/tex],证明:存在正交矩阵 T 使得[tex=10.357x2.786]W1aC/woYAnIXIV+eXPGimA6TYiruE6ZoYhJGhES05OpSUkMtsC9Kq91NSXW/6tntFXg0uzz+QJeeGHSEP4mS6YVNngg9zt11ACboxEGASuWHwae3dHAwNu5D9+BW/zUg[/tex]
- 设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是一个[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级矩阵,证明: 1) [tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是反对称矩阵当且仅当对任一[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]维向量[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex],有[tex=4.0x1.143]rLVONmXxLnhl8YaM4UacI9oY4xHCd5UxvQ2cXFY3Iyc=[/tex]; 2) 如果[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是对称矩阵,且对任一个[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]维向量[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex] ,有[tex=4.0x1.143]rLVONmXxLnhl8YaM4UacI9oY4xHCd5UxvQ2cXFY3Iyc=[/tex],那么[tex=2.071x1.0]P1sZi5Sh6qXV+PX80otJJg==[/tex].