举一反三
- 设矩阵[tex=9.429x3.643]sSXBpxJWudVpH1R35o4LnCGIOkycDZTkkPhY8mBIKIbwAeHt7Ug8XVMVGyxdxELbZmbQmzn0XHljZC59w/+iYhNL8ZZ7JVS/tNqKV85yGr7r9HJ13dVj/sx4hqJwWb6y[/tex],已知存在正交矩阵[tex=0.786x1.286]gvyykdQdNBydRqWi9I4iuA==[/tex], 使得[tex=4.857x1.286]qqZjVILGZVRAhgf21Vfsux42UL7UB5yw+5T8BXDq4/s=[/tex]为对角矩阵,且[tex=0.786x1.286]gvyykdQdNBydRqWi9I4iuA==[/tex]的第一列为[tex=7.571x2.214]eeCanaQCFlwDWIBYI6oJvDhnQpfKKsvSO4a3BEPz5LPN32tKtDiz0O9vdZi30Kyz20Ut7MsCn6OCtyvgDBpjrQ==[/tex] . 求常数[tex=0.571x1.286]mRKL/orzOudCEARA8qn3Kw==[/tex],矩阵[tex=0.786x1.286]gvyykdQdNBydRqWi9I4iuA==[/tex]及[tex=0.714x1.286]6GaLCkpufqH4y+Zpjb+RIQ==[/tex] .
- 设 3 阶实对称矩阵[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的各行元素之和都为 3, 向量[tex=8.286x1.286]njUu8qAvhBDUHKNq730Nh/e+7RIusjjuek1uGAbP7ubbdHodbRcNLeFlXIw0nu3S[/tex],[tex=9.071x1.286]xCzbrSO1Dsvf3UMEghvh62BKfZajeih3TIAgVKJ47Kmk3xIvB2vBIl0/R+x039Nd[/tex]都是齐次线性方程组[tex=3.429x1.286]FF5bUci0HbqKyNGyHKVoog==[/tex]的解。(1) 求[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的特征值和特征向量;(2) 求正交矩阵[tex=0.786x1.286]gvyykdQdNBydRqWi9I4iuA==[/tex]和对角矩阵[tex=0.714x1.286]6GaLCkpufqH4y+Zpjb+RIQ==[/tex], 使得[tex=4.857x1.286]rBT5/uNzgbWBBfGRE6xSbwOuiGdAi5ccrp7SXFh1DT4=[/tex]。
- 设三阶实对称矩阵[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的各行元素之和均为3,向量[tex=7.571x1.286]Pp7l96OcgHRg9IqOljoeP/+pC++ZsB3SJXFnfjsvQG6RuQuO+GDMyTfKSAXCAenN[/tex],[tex=6.214x1.5]VAlAcHxv3I2v41KQonZHP9qlMBgVf3lPlii4AmU4/uY=[/tex]是线性方程组[tex=3.357x1.286]zkPgnv+RxmjUpziLKbhcsw==[/tex]的两个解 . (1)求[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的特征值与特征向量;(2)求正交矩阵[tex=0.786x1.286]gvyykdQdNBydRqWi9I4iuA==[/tex]和对角矩阵[tex=0.714x1.286]6GaLCkpufqH4y+Zpjb+RIQ==[/tex],使得[tex=4.357x1.429]42wWZkrxVuMRs4+YhE8J5Q==[/tex] .
- 若矩阵[tex=7.857x3.5]sSXBpxJWudVpH1R35o4LnA4lIqpBf4gH8eIU2tIDFvHUTa28LnVAl1Ag/LVtmAu+dU0hsU1hhCpG5YGpQ8ul9X0YZiiEbfbYY4waQDC3uoZh/ueoInJj//6K313tBkPa[/tex]相似于对角矩阵[tex=0.714x1.286]6GaLCkpufqH4y+Zpjb+RIQ==[/tex],试确定常数[tex=0.571x1.286]mRKL/orzOudCEARA8qn3Kw==[/tex]的值,并求可逆矩阵[tex=0.786x1.286]dSWbQCTjdbLxKy7q0ps2gg==[/tex],使[tex=5.286x1.286]inWzbGHM3BuvW87VMI4x1zvT5gGl553eJez0aB4E+qw=[/tex] .
- 设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]是[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶正定矩阵,[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]是[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶实对称矩阵,证明:存在[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶可逆矩阵[tex=0.786x1.286]dSWbQCTjdbLxKy7q0ps2gg==[/tex],使得[tex=5.357x1.286]K6zxAGBIogIIiD5GFofAx/pmcJwoRykyV8iSjArS8Ys=[/tex],[tex=4.929x1.286]UzUiBuTu85eC8sat7ufimOL6HcqebYAko5n7tYXBrwA=[/tex],其中[tex=0.714x1.286]6GaLCkpufqH4y+Zpjb+RIQ==[/tex]为对角矩阵.
内容
- 0
设[tex=2.643x1.286]yu9Fqc429BTsCWKDfgGy8g==[/tex]矩阵[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的秩为[tex=0.5x1.286]/r3Eij8VRNC5JxYjlQuXEQ==[/tex]。证明:存在列满秩矩阵[tex=0.786x1.286]dSWbQCTjdbLxKy7q0ps2gg==[/tex]和行满秩矩阵[tex=0.786x1.286]gvyykdQdNBydRqWi9I4iuA==[/tex],使[tex=3.571x1.286]pSpT/0da3Zd5mno7ETYbCQ==[/tex]。
- 1
证明性质7.4.1:设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]是正定矩阵,则(1)[tex=1.286x1.286]I/09VlJojFBZQlWpvi/KHQ==[/tex]为正定矩阵,其中[tex=0.571x1.286]pc/qlnA3cxu8Ag9jp3tYHQ==[/tex]为任意正实数。(2)[tex=1.714x1.286]TO1yVSeu6VTkH5eqe0g3AQ==[/tex]为正定矩阵。(3)[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的伴随矩阵[tex=1.143x1.286]5WX0zEPSvFFLZ40WpRWDWQ==[/tex]为正定矩阵。(4)[tex=1.214x1.286]861032IuvLpLlBDX6HDk6Q==[/tex]为正定矩阵,其中[tex=0.571x1.286]pc/qlnA3cxu8Ag9jp3tYHQ==[/tex]为任意整数。(5)[tex=2.929x1.286]IEeTi5VuX3RXkozn+jPFyg==[/tex]为正定矩阵,其中[tex=0.786x1.286]TKU5UzNEMzEJwORo6mbEYA==[/tex]为可逆实矩阵。
- 2
若矩阵[tex=7.214x4.786]YmZOrAutSxe6/7rdwvN+7/bZaY87MqrgU5rX5j/XTy/bT9xShFBoAuedhDWXKHL7w7GCrX+x8yCkVTzvYKM6Fs/kgNxXds/q5LeFXWehZ3o=[/tex]相似于对角矩阵 [tex=0.714x1.286]6GaLCkpufqH4y+Zpjb+RIQ==[/tex]。试确定常数 [tex=0.571x1.286]mRKL/orzOudCEARA8qn3Kw==[/tex]的值;并求可逆矩阵[tex=0.786x1.286]syhD1QeVJHJnBYGPyhK8Pg==[/tex]使[tex=5.5x1.286]iuRNIgLZWIrQnIQsMkDqTe0eYCgDXz8mqp/NFlYQr8Q=[/tex]。(本题满分13分)
- 3
已知[tex=0.571x1.286]mRKL/orzOudCEARA8qn3Kw==[/tex]是常数,且矩阵[tex=9.0x4.786]bh860vCil1s72yls8vfnjat3Dbvojc8hLRWk/nCV3ebiRWizO89cYuTTo38zBjIGeD2hUrPnUa8IijGRdEA3Du2BH0MKt6kvI3x/s7hB57g=[/tex]可经过初等列变换化为矩阵[tex=9.0x4.786]eNRAQFs3w3YthMte51dkgg2JyKcCAoM3dAkTu32GTuAEcD3IpHb765sPI1zpYbGVJLtm0Lmy29PAyZrr/e0uk8grE58X5zesayEV+Qghuq8=[/tex];(1)求[tex=0.571x1.286]mRKL/orzOudCEARA8qn3Kw==[/tex];(2)求满足[tex=3.571x1.286]sOfq1nMU4AuaHoSlEVk43g==[/tex]的可逆矩阵[tex=0.786x1.286]dSWbQCTjdbLxKy7q0ps2gg==[/tex]。
- 4
对下列实对称矩阵[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex] 求正交矩阵[tex=0.786x1.286]dSWbQCTjdbLxKy7q0ps2gg==[/tex], 使得[tex=3.357x1.286]TvRsUv5t/3lJOPEdcGcONfuVM4C/bLaP8ZJtWRinRXA=[/tex]为对角矩阵:[tex=6.214x2.786]sSXBpxJWudVpH1R35o4LnE0bLZnSPEoDNmtl5XLvZQ81q6AbPwVhJ0ckZM/g2nUxqJrc7JTIzM2sUXDRpC7mKQ==[/tex]