举一反三
- 设[tex=9.786x3.643]No14tepOrgpLFcwU7iwUQQvglEGGUy9ZiDuxX2HIvBX3d+/E7K58pAIcF/Nxs6hUCyiztM/DNypvc45YdZHZ8CLG12Q7V7KDDD3Y0dRNLUvtciSKRRGAMsa/GzOe80BV[/tex], 存在正交矩阵[tex=0.786x1.286]gvyykdQdNBydRqWi9I4iuA==[/tex], 使得[tex=4.857x1.286]rBT5/uNzgbWBBfGRE6xSbwOuiGdAi5ccrp7SXFh1DT4=[/tex]为对角矩阵。 若[tex=0.786x1.286]gvyykdQdNBydRqWi9I4iuA==[/tex]的第一列为[tex=6.286x2.214]/mzsbC9+gbgDwnVXaJmchYWQD2ZNbI/BUvOLYyFtgvmLcvqQVQl953UEpLqqAwaq[/tex], 求常数[tex=0.571x1.286]mRKL/orzOudCEARA8qn3Kw==[/tex]、正交矩阵[tex=0.786x1.286]gvyykdQdNBydRqWi9I4iuA==[/tex]及对角矩阵[tex=0.714x1.286]6GaLCkpufqH4y+Zpjb+RIQ==[/tex] 。
- 如图,[tex=3.143x1.286]REaUoNxha/GBn3DE8cgfDA==[/tex]是边长为4的正方形,[tex=0.786x1.286]YggwMQ4w3PxfhkmL0NfgdQ==[/tex]、[tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]分别为[tex=1.571x1.286]cHJ4KDAad01mWuGaiQQpfA==[/tex]、[tex=1.571x1.286]hOo99m7YJCAnVf2cQGX8dQ==[/tex]的中点,则阴影部分的面积为[img=163x138]17e6c55620e728c.png[/img] A: 4 B: 5 C: 6 D: 7 E: 8
- 设 3 阶实对称矩阵[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的各行元素之和都为 3, 向量[tex=8.286x1.286]njUu8qAvhBDUHKNq730Nh/e+7RIusjjuek1uGAbP7ubbdHodbRcNLeFlXIw0nu3S[/tex],[tex=9.071x1.286]xCzbrSO1Dsvf3UMEghvh62BKfZajeih3TIAgVKJ47Kmk3xIvB2vBIl0/R+x039Nd[/tex]都是齐次线性方程组[tex=3.429x1.286]FF5bUci0HbqKyNGyHKVoog==[/tex]的解。(1) 求[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的特征值和特征向量;(2) 求正交矩阵[tex=0.786x1.286]gvyykdQdNBydRqWi9I4iuA==[/tex]和对角矩阵[tex=0.714x1.286]6GaLCkpufqH4y+Zpjb+RIQ==[/tex], 使得[tex=4.857x1.286]rBT5/uNzgbWBBfGRE6xSbwOuiGdAi5ccrp7SXFh1DT4=[/tex]。
- 设三阶实对称矩阵[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的各行元素之和均为3,向量[tex=7.571x1.286]Pp7l96OcgHRg9IqOljoeP/+pC++ZsB3SJXFnfjsvQG6RuQuO+GDMyTfKSAXCAenN[/tex],[tex=6.214x1.5]VAlAcHxv3I2v41KQonZHP9qlMBgVf3lPlii4AmU4/uY=[/tex]是线性方程组[tex=3.357x1.286]zkPgnv+RxmjUpziLKbhcsw==[/tex]的两个解 . (1)求[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的特征值与特征向量;(2)求正交矩阵[tex=0.786x1.286]gvyykdQdNBydRqWi9I4iuA==[/tex]和对角矩阵[tex=0.714x1.286]6GaLCkpufqH4y+Zpjb+RIQ==[/tex],使得[tex=4.357x1.429]42wWZkrxVuMRs4+YhE8J5Q==[/tex] .
- 证明性质7.4.1:设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]是正定矩阵,则(1)[tex=1.286x1.286]I/09VlJojFBZQlWpvi/KHQ==[/tex]为正定矩阵,其中[tex=0.571x1.286]pc/qlnA3cxu8Ag9jp3tYHQ==[/tex]为任意正实数。(2)[tex=1.714x1.286]TO1yVSeu6VTkH5eqe0g3AQ==[/tex]为正定矩阵。(3)[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的伴随矩阵[tex=1.143x1.286]5WX0zEPSvFFLZ40WpRWDWQ==[/tex]为正定矩阵。(4)[tex=1.214x1.286]861032IuvLpLlBDX6HDk6Q==[/tex]为正定矩阵,其中[tex=0.571x1.286]pc/qlnA3cxu8Ag9jp3tYHQ==[/tex]为任意整数。(5)[tex=2.929x1.286]IEeTi5VuX3RXkozn+jPFyg==[/tex]为正定矩阵,其中[tex=0.786x1.286]TKU5UzNEMzEJwORo6mbEYA==[/tex]为可逆实矩阵。
内容
- 0
若矩阵[tex=7.857x3.5]sSXBpxJWudVpH1R35o4LnA4lIqpBf4gH8eIU2tIDFvHUTa28LnVAl1Ag/LVtmAu+dU0hsU1hhCpG5YGpQ8ul9X0YZiiEbfbYY4waQDC3uoZh/ueoInJj//6K313tBkPa[/tex]相似于对角矩阵[tex=0.714x1.286]6GaLCkpufqH4y+Zpjb+RIQ==[/tex],试确定常数[tex=0.571x1.286]mRKL/orzOudCEARA8qn3Kw==[/tex]的值,并求可逆矩阵[tex=0.786x1.286]dSWbQCTjdbLxKy7q0ps2gg==[/tex],使[tex=5.286x1.286]inWzbGHM3BuvW87VMI4x1zvT5gGl553eJez0aB4E+qw=[/tex] .
- 1
设[tex=2.643x1.286]yu9Fqc429BTsCWKDfgGy8g==[/tex]矩阵[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的秩为[tex=0.5x1.286]/r3Eij8VRNC5JxYjlQuXEQ==[/tex]。证明:存在列满秩矩阵[tex=0.786x1.286]dSWbQCTjdbLxKy7q0ps2gg==[/tex]和行满秩矩阵[tex=0.786x1.286]gvyykdQdNBydRqWi9I4iuA==[/tex],使[tex=3.571x1.286]pSpT/0da3Zd5mno7ETYbCQ==[/tex]。
- 2
set1 = {x for x in range(10)} print(set1) 以上代码的运行结果为? A: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} B: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10} C: {1, 2, 3, 4, 5, 6, 7, 8, 9} D: {1, 2, 3, 4, 5, 6, 7, 8, 9,10}
- 3
6个顶点11条边的所有非同构的连通的简单非平面图有[tex=2.143x2.429]iP+B62/T05A6ZTM0eeaWiQ==[/tex]个,其中有[tex=2.143x2.429]ndZSw3zT0QTOVLVdoUto1Q==[/tex]个含子图[tex=1.786x1.286]J+vVZa2YaMpc6mJBbqVvWw==[/tex],有[tex=2.143x2.429]lmhx48evnQMhi03NovPXig==[/tex]个含与[tex=1.214x1.214]kFXZ1uR8GjycbJx+Ts2kyQ==[/tex]同胚的子图。供选择的答案[tex=3.071x1.214]3KinXFh3SXhZ7nIe1y9KEV6aadxhhJWeEy6Dij1iObdMUZkY6ZA5J2dVVjPSuhEf[/tex]:(1) 1 ;(2) 2 ;(3) 3 ; (4) 4 ;(5) 5 ;(6) 6 ; (7) 7 ; (8) 8 。
- 4
【计算题】5 ×8= 6×4= 7×7= 9×5= 2×3= 9 ×2= 8×9= 7×8= 5×5= 4×3= 5+8= 6 ×6= 3×7= 4×8= 9×3= 1 ×2= 9×9= 6×8= 8×0= 4×7=