设矩阵[tex=9.429x3.643]sSXBpxJWudVpH1R35o4LnCGIOkycDZTkkPhY8mBIKIbwAeHt7Ug8XVMVGyxdxELbZmbQmzn0XHljZC59w/+iYhNL8ZZ7JVS/tNqKV85yGr7r9HJ13dVj/sx4hqJwWb6y[/tex],已知存在正交矩阵[tex=0.786x1.286]gvyykdQdNBydRqWi9I4iuA==[/tex], 使得[tex=4.857x1.286]qqZjVILGZVRAhgf21Vfsux42UL7UB5yw+5T8BXDq4/s=[/tex]为对角矩阵,且[tex=0.786x1.286]gvyykdQdNBydRqWi9I4iuA==[/tex]的第一列为[tex=7.571x2.214]eeCanaQCFlwDWIBYI6oJvDhnQpfKKsvSO4a3BEPz5LPN32tKtDiz0O9vdZi30Kyz20Ut7MsCn6OCtyvgDBpjrQ==[/tex] . 求常数[tex=0.571x1.286]mRKL/orzOudCEARA8qn3Kw==[/tex],矩阵[tex=0.786x1.286]gvyykdQdNBydRqWi9I4iuA==[/tex]及[tex=0.714x1.286]6GaLCkpufqH4y+Zpjb+RIQ==[/tex] .
举一反三
- 设[tex=9.786x3.643]No14tepOrgpLFcwU7iwUQQvglEGGUy9ZiDuxX2HIvBX3d+/E7K58pAIcF/Nxs6hUCyiztM/DNypvc45YdZHZ8CLG12Q7V7KDDD3Y0dRNLUvtciSKRRGAMsa/GzOe80BV[/tex], 存在正交矩阵[tex=0.786x1.286]gvyykdQdNBydRqWi9I4iuA==[/tex], 使得[tex=4.857x1.286]rBT5/uNzgbWBBfGRE6xSbwOuiGdAi5ccrp7SXFh1DT4=[/tex]为对角矩阵。 若[tex=0.786x1.286]gvyykdQdNBydRqWi9I4iuA==[/tex]的第一列为[tex=6.286x2.214]/mzsbC9+gbgDwnVXaJmchYWQD2ZNbI/BUvOLYyFtgvmLcvqQVQl953UEpLqqAwaq[/tex], 求常数[tex=0.571x1.286]mRKL/orzOudCEARA8qn3Kw==[/tex]、正交矩阵[tex=0.786x1.286]gvyykdQdNBydRqWi9I4iuA==[/tex]及对角矩阵[tex=0.714x1.286]6GaLCkpufqH4y+Zpjb+RIQ==[/tex] 。
- 如图,[tex=3.143x1.286]REaUoNxha/GBn3DE8cgfDA==[/tex]是边长为4的正方形,[tex=0.786x1.286]YggwMQ4w3PxfhkmL0NfgdQ==[/tex]、[tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]分别为[tex=1.571x1.286]cHJ4KDAad01mWuGaiQQpfA==[/tex]、[tex=1.571x1.286]hOo99m7YJCAnVf2cQGX8dQ==[/tex]的中点,则阴影部分的面积为[img=163x138]17e6c55620e728c.png[/img] A: 4 B: 5 C: 6 D: 7 E: 8
- 设 3 阶实对称矩阵[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的各行元素之和都为 3, 向量[tex=8.286x1.286]njUu8qAvhBDUHKNq730Nh/e+7RIusjjuek1uGAbP7ubbdHodbRcNLeFlXIw0nu3S[/tex],[tex=9.071x1.286]xCzbrSO1Dsvf3UMEghvh62BKfZajeih3TIAgVKJ47Kmk3xIvB2vBIl0/R+x039Nd[/tex]都是齐次线性方程组[tex=3.429x1.286]FF5bUci0HbqKyNGyHKVoog==[/tex]的解。(1) 求[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的特征值和特征向量;(2) 求正交矩阵[tex=0.786x1.286]gvyykdQdNBydRqWi9I4iuA==[/tex]和对角矩阵[tex=0.714x1.286]6GaLCkpufqH4y+Zpjb+RIQ==[/tex], 使得[tex=4.857x1.286]rBT5/uNzgbWBBfGRE6xSbwOuiGdAi5ccrp7SXFh1DT4=[/tex]。
- 设三阶实对称矩阵[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的各行元素之和均为3,向量[tex=7.571x1.286]Pp7l96OcgHRg9IqOljoeP/+pC++ZsB3SJXFnfjsvQG6RuQuO+GDMyTfKSAXCAenN[/tex],[tex=6.214x1.5]VAlAcHxv3I2v41KQonZHP9qlMBgVf3lPlii4AmU4/uY=[/tex]是线性方程组[tex=3.357x1.286]zkPgnv+RxmjUpziLKbhcsw==[/tex]的两个解 . (1)求[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的特征值与特征向量;(2)求正交矩阵[tex=0.786x1.286]gvyykdQdNBydRqWi9I4iuA==[/tex]和对角矩阵[tex=0.714x1.286]6GaLCkpufqH4y+Zpjb+RIQ==[/tex],使得[tex=4.357x1.429]42wWZkrxVuMRs4+YhE8J5Q==[/tex] .
- 证明性质7.4.1:设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]是正定矩阵,则(1)[tex=1.286x1.286]I/09VlJojFBZQlWpvi/KHQ==[/tex]为正定矩阵,其中[tex=0.571x1.286]pc/qlnA3cxu8Ag9jp3tYHQ==[/tex]为任意正实数。(2)[tex=1.714x1.286]TO1yVSeu6VTkH5eqe0g3AQ==[/tex]为正定矩阵。(3)[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的伴随矩阵[tex=1.143x1.286]5WX0zEPSvFFLZ40WpRWDWQ==[/tex]为正定矩阵。(4)[tex=1.214x1.286]861032IuvLpLlBDX6HDk6Q==[/tex]为正定矩阵,其中[tex=0.571x1.286]pc/qlnA3cxu8Ag9jp3tYHQ==[/tex]为任意整数。(5)[tex=2.929x1.286]IEeTi5VuX3RXkozn+jPFyg==[/tex]为正定矩阵,其中[tex=0.786x1.286]TKU5UzNEMzEJwORo6mbEYA==[/tex]为可逆实矩阵。