由曲边梯形D:a≤x≤b,0≤y≤f(x)绕x轴旋转一周所产生的旋转体的体积是().
A: ∫abf2(x)dx;
B: ∫baf2dx;
C: ∫abπf2(x)dx;
D: ∫abπf2(x)dx.
A: ∫abf2(x)dx;
B: ∫baf2dx;
C: ∫abπf2(x)dx;
D: ∫abπf2(x)dx.
举一反三
- 设f(x),g(x)在区间[a,b]上连续,且g(x)<f(x)<m,则由曲线y=g(x),y=f(x)及直线X一口,X一6所围成的平面区域绕直线y=m旋转一周所得旋转体体积为( ). A: π∫ab[2m—f(x)+g(x)][f(x)一g(x)]dx B: π∫ab[2m一f(x)一g(x)][f(x)一g(x)]dx C: π∫ab[m一f(x)+g(x)][f(x)一g(x)]dx D: π∫ab[m一f(x)一g(x)][f(x)一g(x)]dx
- 设f(x)在[a,b]上连续,则f(x)在[a,b]上的平均值是( ) A: f(a)+f(b)2 B: ∫baf(x)dx C: 12∫baf(x)dx D: 1b-a∫baf(x)dx
- 设$f(x)$是连续的奇函数,则定积分$\int_{-1}^1 f(x)dx=$ A: $2\int_{-1}^0 f(x)dx$ B: $\int_{-1}^0 f(x)dx$ C: $\int_{0}^1 f(x)dx$ D: $0$
- 设f(x),g(x)在区间[a,b]上连续,且g(x) A: π∫ab[2m-f(x)+g(x)][f(x)-g(x)]dx B: π∫ab[2m-f(x)-g(x)][f(x)-g(x)]dx C: π∫ab[m-f(x)+g(x)][f(x)-g(x)]dx D: π∫ab[m-f(x)-g(x)][f(x)-g(x)]dx
- 设f(x)=(1/(1+x^2))+x^3∫(0到1)f(x)dx,求∫(0到1)f(x)dx