一袋中有[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]张卡片,分别记为[tex=0.5x1.0]AYXQx0BMtpSPsr4BfOe2YQ==[/tex],[tex=0.5x1.0]8C7DKsr6nhrfCdsmGxO88g==[/tex],[tex=3.857x0.429]FNaFBYX3LU3eDpClcDMsj27UO8rjVHAzOmR4P5XTlPQ=[/tex],[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex],从中有放回地抽取出[tex=0.571x1.0]rFc/sfAAuCOtzhevhoREeA==[/tex]张来,以[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]表示所得号码之和,求[tex=2.357x1.357]57DCzUieph2S0AM7NnAdtA==[/tex], D(X)$ 。
举一反三
- 袋中有 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 张卡片,分别记有号码 [tex=4.786x1.214]z3hcoJ5m3G1Uw14s+f7c9VGygbKAv96keVxUd8y71kQ=[/tex] 从中有放回地抽取 [tex=0.571x1.0]rFc/sfAAuCOtzhevhoREeA==[/tex] 张来,以 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 表示所得号码之和,求 [tex=4.0x1.214]NCp059AKTbM0+oD+qEVcWA==[/tex]
- 袋中有 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]张卡片,记有号码 [tex=4.786x1.214]UDiU3JYsnj6lh5f2WX2NF6sA0+Z8qLwF11pfKFeTWfY=[/tex] 现从中有放回地抽出 [tex=0.571x1.0]rFc/sfAAuCOtzhevhoREeA==[/tex] 张卡片, 求号码之和 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的数学期望.
- 将一枚硬币连掷 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 次,以 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 表示这 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 次中出现正面的次数,求 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的分布列。
- 设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]是一个[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶实对称矩阵,且[tex=3.143x1.357]UJPO4W988N9GD+L2qw/VKw==[/tex],证明:存在实[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]维向量[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex],使[tex=4.571x1.214]0/KaLJMUhPX6ftFvgZrv+0XmVzxZcEeSyap5HbYe7CM=[/tex]。
- [tex=0.643x0.786]1V9/0t4COd6RPMFD35/acA==[/tex]个座位依次从[tex=0.5x1.0]oYgVDn+QZqcDCRxqEZwM2A==[/tex]号编到[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]号,把[tex=0.5x1.0]oYgVDn+QZqcDCRxqEZwM2A==[/tex]至[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]号的[tex=0.643x0.786]mz5xwysszIT+Zv8SWiQSKQ==[/tex]个号码分给[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]个人,每人一个号码,这[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]个人随意地坐到座位上,求至少有一个人手里的号码恰好与座位号码相等的概率,且当[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]很大时,给出这个概率的近似值.