设 [tex=0.857x1.0]PvQ1rNj9zmhWbdNmDhnQhA==[/tex] 为主理想整环, [tex=0.5x1.0]3EF1VcotinZAjtQqtSWaxw==[/tex] 为 [tex=0.857x1.0]PvQ1rNj9zmhWbdNmDhnQhA==[/tex] 的非平凡理想. 证明:(1) [tex=1.786x1.357]rVha93gue1hGUj4eBZxCow==[/tex] 的每一个理想都是主理想, 并说明 [tex=1.786x1.357]rVha93gue1hGUj4eBZxCow==[/tex] 是否主理想整环;(2) [tex=1.786x1.357]rVha93gue1hGUj4eBZxCow==[/tex] 仅有有限多个理想.
举一反三
- 设[tex=0.857x1.0]eMszuSG5by5UfRZVROYp5A==[/tex]是一个阶大于 1 且有单位元的整环. 证明:[tex=0.857x1.0]eMszuSG5by5UfRZVROYp5A==[/tex]是域[tex=4.0x1.286]6f+P4CIy45aab8A5ZwLRx7cgRe+SgMjQ43a7vcN8TVo=[/tex]是主理想整环.
- 若函数[tex=1.786x1.357]GYJ7X7XJijqizBuSGMrl3g==[/tex]在区域[tex=0.857x1.0]PvQ1rNj9zmhWbdNmDhnQhA==[/tex]内解析,且满足下列条件之一,试证[tex=1.786x1.357]GYJ7X7XJijqizBuSGMrl3g==[/tex]必为常数。(1)[tex=1.786x1.571]tOYaARFCYk8pvlpI2d4l8ZEZPmxuzOJDEH7zTRGNOGc=[/tex]在[tex=0.857x1.0]PvQ1rNj9zmhWbdNmDhnQhA==[/tex]内解析;(2[tex=2.286x1.214]Zc3Hoxfo3CINZgKNZPMB7w==[/tex]。
- 证明(1) 环 [tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]的任意有限多个理想的和还是[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]的理想 (2) 环 [tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex] 的任意 ( 有限或无限) 多个理想的交还是 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的理想.
- 设[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]是主理想整环[tex=0.5x1.0]LcdCy2j5rNO7dKCH5QTrlQ==[/tex],是[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的理想且 [tex=3.286x1.357]dFTkQ01Y6TZlDUeXGPq6dA==[/tex],试证:[tex=1.714x1.357]ceJTjldMkJXWCHatl5T1Jg==[/tex]中仅有有限多个理想。
- 设函数 [tex=1.786x1.357]GYJ7X7XJijqizBuSGMrl3g==[/tex] 再单连通区域 [tex=0.857x1.0]PvQ1rNj9zmhWbdNmDhnQhA==[/tex] 内连续,[tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex] 为 [tex=0.857x1.0]PvQ1rNj9zmhWbdNmDhnQhA==[/tex] 内任意一条曲线,若 [tex=5.286x2.643]AHnnrG5b69wfH+vDBFabjLTUEJOQdS/1MuqxyEjO5qg=[/tex],证明函数 [tex=1.786x1.357]GYJ7X7XJijqizBuSGMrl3g==[/tex] 在 [tex=0.857x1.0]PvQ1rNj9zmhWbdNmDhnQhA==[/tex] 内解析.