设二维随机变量 [tex=2.786x1.286]wsm6hZKLwoHLmpiSvjoPLA==[/tex] 服从区域 [tex=10.929x1.286]bf7mxN/1XbjV+1U5hRGMJUfk2UVQmDuhsNzlbsabcB65aewQwXq9VbU3MC7M2ndw[/tex] 上的均匀分布,求:(1) [tex=2.786x1.286]rHpbFIkzEXdrQ+mcZyCBkQ==[/tex] 条件下 [tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex] 的条件密度函数.(2) [tex=2.643x1.286]T0WCDggc1xWksEhYC1fmtA==[/tex] 条件下 [tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex] 的条件密度函数.
举一反三
- 设二维随机变量[tex=2.786x1.286]vzGOG+JNlRurOKCm31T4Kw==[/tex]在圆域[tex=5.357x1.286]oOYTzm/NiJqJo4OjC55er1L5z17HiYuK5dHQrlDB2IM=[/tex]上服从均匀分布,(1)求[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]的相关系数[tex=0.571x1.286]mGHbklYlBVNXKEGAelwITA==[/tex];(2)问[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex],[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]是否独立?
- 设二维随机变量 [tex=2.5x1.357]aikhN0DJgQzlD9+fBIp9pQ==[/tex] 服从区域 [tex=10.0x1.571]AQPf1OOhhpn3OEMQll/I3BfWuwDGNwDNpY5qbt4IGrRP08brr2m0wpSHHhboc5bN[/tex] 上的均匀分布,求:(1) [tex=2.214x1.0]xs0qFnjvfcblW7qZkhTS5Q==[/tex] 条件下 [tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex] 的条件密度函数.(2) [tex=1.857x1.214]rDLn1Qpf2FlaBXUmHX8PHw==[/tex] 条件下 [tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex] 的条件密度函数.
- 设二维随机变量 [tex=2.786x1.286]wsm6hZKLwoHLmpiSvjoPLA==[/tex]服从区域 [tex=15.429x1.286]bf7mxN/1XbjV+1U5hRGMJUL29bpbVhbED9m+nTCgXF2qosKQudDF0at83HHogwIkKA3E0KzQ3LgVTN7ZqY6wDA==[/tex] 上的均匀分布,求 [tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex] 和 [tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex] 的边缘密度函数.
- 设二维随机向量[tex=2.786x1.286]wsm6hZKLwoHLmpiSvjoPLA==[/tex]的联合概率密度为[tex=11.929x2.429]EPaISH7F+7OFqeEao9lVbWFvFTtp0jw27PSX4ey93+ocil6tIoqQAiW27sY9aEJATysk76yueULO0jcKgcds9A==[/tex](1)求[tex=2.786x1.286]AG5D6gU/evQZlfwisXgzYw==[/tex]分别关于[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]的边缘概率密度[tex=2.5x1.286]uu/ytNPk37vj04MgqWVXSQ==[/tex],[tex=2.429x1.286]vHFsKxNVPoBwN26UxM1ppg==[/tex];(2)判断[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]、[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]是否独立,并说明理由。
- 设二维随机变量[tex=2.786x1.286]AG5D6gU/evQZlfwisXgzYw==[/tex]的联合分布律为[img=638x116]177b404367b6749.png[/img](1)求关于[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和关于[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]的边缘分布律;(2)[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]与[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]是否相互独立?