设方程组\(\begin{bmatrix}a&1&1\\1&a&1\\1&1&a\end{bmatrix} \begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix} = \begin{bmatrix}1\\1\\-2\end{bmatrix}\)有无穷多解,则\(a=\)______
举一反三
- 设矩阵\(N=\begin{bmatrix} 0 & A \\ B & 0 \end{bmatrix}\),其中\(A=\begin{bmatrix}4 & 1 \\ 3& 1\end{bmatrix}\),\(B=\begin{bmatrix}1 & 0 \\ 0& 1\end{bmatrix}\),则\(N^{-1}=\)
- 求下面矩阵的 Cholesky 分解 (다음 행렬의 Cholesky factorization을 구하시오). \begin{bmatrix}<br/>1\ \,\, 3\ \,\, 7\\ <br/>3\ 10\ 26\\ <br/>7\ 26\ 75\\<br/>\end{bmatrix} A: \(U=\begin{bmatrix}<br/>1\ 3\ 7\\ <br/>0\ 1\ 5\\ <br/>0\ 0\ 1\\<br/>\end{bmatrix}\) B: \(U=\begin{bmatrix}<br/>1\ 2\ 7\\ <br/>0\ 3\ 5\\ <br/>0\ 0\ 1\\<br/>\end{bmatrix}\) C: \(U=\begin{bmatrix}<br/>1\ 3\ 7\\ <br/>0\ 2\ 5\\ <br/>0\ 0\ 1\\<br/>\end{bmatrix}\) D: \(U=\begin{bmatrix}<br/>1\ 3\ 1\\ <br/>0\ 1\ 5\\ <br/>0\ 0\ 7\\<br/>\end{bmatrix}\) E: \(U=\begin{bmatrix}<br/>1\ 2\ 7\\ <br/>0\ 3\ 1\\ <br/>0\ 0\ 1\\<br/>\end{bmatrix}\)
- 已知矩阵\(A=\begin{bmatrix}0&1&0&0\\1&0&0&0\\0&0&0&1\\0&0&1&0\end{bmatrix}\),则\(A^{-1}=A\)
- 设`3`阶实对称矩阵`A`满足`A^3+A^2=0`, 则`A`相似于对角阵`\Lambda =` A: \begin{bmatrix} 0 & 0 &0 \\ 0 & 0& 0 \\ 0 & 0 & 1 \end{bmatrix} B: \begin{bmatrix} 1 & 0 &0 \\ 0 & 0& 0 \\ 0 & 0 & -1 \end{bmatrix} C: \begin{bmatrix} 0 & 0 &0 \\ 0 & 0& 0 \\ 0 & 0 & -1 \end{bmatrix} D: \begin{bmatrix} 1 &0 &0 \\ 0 & 1& 0 \\ 0 & 0 & -1 \end{bmatrix}
- 设A为3阶矩阵,将A的第二列加到第一列得到矩阵B,再交换B的第二行和第三行得单位矩阵,则矩阵A为( ) A: \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\-1 & 1 & 0 \end{bmatrix} B: \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\-1 & 1 & 0 \end{bmatrix} C: \begin{bmatrix} -1 &1 & 0 \\ 0 & 0 & 1 \\-1 & 1 & 0 \end{bmatrix} D: \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\-1 & 1 & 0 \end{bmatrix}