• 2022-06-08
    如果矩阵[tex=6.214x2.786]3BT1BgBZQ5uJXxD5dg+w218btlHJnvsvnTigSxXr+eIUsuw/KC3tuqEaqYuXd8lB+NHuPsE6cavlG2/E9iNyig==[/tex]与对角矩阵相似,则写出相似对角矩阵[tex=0.929x1.0]tfHTq5YB6eq76zMfF9z56Q==[/tex] 及 [tex=0.786x1.0]6J6pLBwELDvuZYB9vl6pdg==[/tex].
  • 解:二阶矩阵 [tex=6.214x2.786]3BT1BgBZQ5uJXxD5dg+w218btlHJnvsvnTigSxXr+eIUsuw/KC3tuqEaqYuXd8lB+NHuPsE6cavlG2/E9iNyig==[/tex] 有互不相同的特征值 [tex=4.929x1.214]RU+LhY2MUOc+6o925YvTlIvF9prTZ2dIe4jK7L/8gxg=[/tex], 所以 [tex=0.929x1.0]tfHTq5YB6eq76zMfF9z56Q==[/tex]可与对角矩阵相似.由已求得的两个线性无关的特征向量 [tex=10.571x1.5]spsZ+rMIOMiqBxP/ZoH2F1TVWPIsrLGAAUbbDHlh/OEwvxmguwff/jv0msQ+v7WzJxMAzBlrDvG8rdbDADvfQ4BjvAU0Dt5/IONm6Blb7uIhHAsGyhkLRvkW4OGJFu4C[/tex], 得 [tex=6.071x1.357]VQgFjhg3o5z/UWkjYRg2VG4Bfn3b4Zi76qNZVJCJf3wEkSIM3Qd5xhkPk7npblOlB+8fEBdlC5Wx9tJM7xbeNJz9NAxVcDAph0PeLuzmrCk=[/tex][tex=5.286x2.786]jcCMHflCR8OS9TosV6N5vNzMuJNlKzzsd18wpNixecgekc2p/ydP7P6olHYBw4uxyfKGjpWXaXwucZzAZv+MwQ==[/tex],记 [tex=6.286x2.786]+HNIZcMaSzNwCe0LO7bsUtE7T/ezT3heRoWANqpeD0+HyylmCQlHmIuIy8onM3QvHJdcHrfUKJaE90sLnzqyzSqDvpX3EnGY4MHehlA2xRg=[/tex],则[tex=4.929x1.214]qexJSKNTYTm2313etPT3yQyJPsPvR7a+JuEIQZ/+vLVZgw4FEhtugqyItVuy+kBtx1yy+Z57v2KiSNQoMoxkXPB8oILFHNWRX1Xs3zQPEvU=[/tex]

    举一反三

    内容

    • 0

      下列矩阵是否与对角矩阵相似?若相似于对角矩阵, 求 [tex=0.714x1.286]BMKsEVFNvpiLV0UsqDFXCw==[/tex] 使 [tex=3.214x1.286]1sFdXzzqHCc4qLXdM8ki4Toicy90dsQBVNzF4LK8JX8=[/tex] 为对角矩阵.[p=align:center][tex=5.357x2.786]jcCMHflCR8OS9TosV6N5vFWjToaaWqOOGqoRSEmRakI8euajTYJW+cFHO0sg+D0a+NjWo5p5K3fsrlwkGSJ1tg==[/tex]

    • 1

      证明:如果实矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]正交相似于对角矩阵,则[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]一定是对称矩阵.

    • 2

      下列矩阵是否与对角矩阵相似?若相似于对角矩阵, 求 [tex=0.714x1.286]BMKsEVFNvpiLV0UsqDFXCw==[/tex] 使 [tex=3.214x1.286]1sFdXzzqHCc4qLXdM8ki4Toicy90dsQBVNzF4LK8JX8=[/tex] 为对角矩阵.[p=align:center][tex=7.857x3.929]jcCMHflCR8OS9TosV6N5vNF0Ht7EtBbeDLHluhYHejByT6aLXCSmkH2ygZWvIirihyGjHbIbgSgvxDJ9x8yJnPuBRfs11OT98H/vffeQswT2hcIZl8u2tnvwMLBc2tWO[/tex]

    • 3

      下列矩阵是否与对角矩阵相似?若相似于对角矩阵, 求 [tex=0.714x1.286]BMKsEVFNvpiLV0UsqDFXCw==[/tex] 使 [tex=3.214x1.286]1sFdXzzqHCc4qLXdM8ki4Toicy90dsQBVNzF4LK8JX8=[/tex] 为对角矩阵.[p=align:center][tex=7.643x3.643]jcCMHflCR8OS9TosV6N5vOctec2onkOcL9XnUGJeWh3qZvNBVS19uWfWoa27zjItImNPL8uNa0phPgzXQflWtOjTca6POSzC/6aw9Mb1ufgt2EhgbEapGat2bi6egr0h[/tex]

    • 4

      下列矩阵是否与对角矩阵相似?若相似于对角矩阵, 求 [tex=0.714x1.286]BMKsEVFNvpiLV0UsqDFXCw==[/tex] 使 [tex=3.214x1.286]1sFdXzzqHCc4qLXdM8ki4Toicy90dsQBVNzF4LK8JX8=[/tex] 为对角矩阵.[p=align:center][tex=8.429x3.643]jcCMHflCR8OS9TosV6N5vE+ILInEdrNZmLPdu5yGc5/18+5aCmsneZxFXusbuAuha4wP72KXmMNlXiSam9ZCne7eGxoMSgWv1D5AVzaLGiLdEc5nMyQ+BIIQfiUWSvJU[/tex]