举一反三
- 设 [tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex] 是域 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 上 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 维线性空间 [tex=0.643x1.0]hup1TbyhwSEMuEHzxR4LKA==[/tex] 上的一个双线性函数. 证明:[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex] 是非退化的充分必要条件为 [tex=1.071x1.286]TQ6W7NdShUMaJKPfU8Z7VA==[/tex] ( 或 [tex=1.143x1.286]Pw1prNL49Z9lVuhmkR+qWg==[/tex] )是线性空间 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 到 [tex=1.214x1.071]XUYOLSDZxfQs8dKdxxKfFw==[/tex] 的同构映射.
- 设 [tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex] 是数域 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 上[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵集合到 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 的一个映射, 它满足下列条件:(1) 对任意的 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵 [tex=11.857x1.357]PyBoS3zBK0M8dFy5nc2BCQAjvq9LapSCVSEPLvCboCNL9Sf89YDDNJnh9P6XU+Xa[/tex](2) 对任意的 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 和 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 中数 [tex=7.143x1.357]ZssA/FjDDGKlA7//o6lvBHjGIYzZWXwRor3cGphMPPA=[/tex](3) 对任意的 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵 [tex=9.071x1.357]CV7XimFyNvpshBoHaexhcrFdFwXW4pEFstEvGviliLE=[/tex](4) [tex=4.143x1.357]mTjc3HPxil5qpbqmEffFWqjszfkzs0w4AuinGz3AXRg=[/tex]求证: [tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex] 就是迹, 即 [tex=4.714x1.357]abvMETy3K96uBRzmzh1OP8sPIldqFdFpE5NVrVc0Ciw=[/tex] 对一切 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 上 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 成立.
- 设 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 是域 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 上一个线性空间. 证明: 若 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 是有限维的, 则 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 的任一子空间都是某些线性函数的零化子空间.
- 设 [tex=2.071x1.214]0aqQOsaNf6jKrWhlACndVg==[/tex] 都是域 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 上线性空间 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 的子空间,证明 [tex=10.714x2.071]BlbRV6hmnF5YbAykKbuM83aiLvA61LxU+GqrrNExjMNg3izsles3R25gcUECl8eH[/tex].
- 求下列线性空间 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 的维数:[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 是数域 [tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex] 上 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶对称矩阵全体组成的线性空间;
内容
- 0
证明: 数域 [tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex] 上每一个 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 维线性空间 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 都可以表示成 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]个一维子空间的直和.
- 1
求下列线性空间 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 的维数:[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 是数域 [tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex] 上 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶反对称矩阵全体组成的线性空间.
- 2
设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]是域 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 上 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 维线性空间 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 上的一个线性变换. 证明: 在 [tex=1.786x1.357]2pFrMmryE2cRTmNCb4YNBA==[/tex] 中存在一个次数 [tex=2.071x1.357]7chhhwfJwqwEvXCvQhaPf/NbmqM5/uxZjnHdLFf2I/U=[/tex] 的非零多项式 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 使得 [tex=3.714x1.357]619NWWixKPCSw5gBvKf3BFy7dL1orFzl95yMux+ODsw=[/tex]
- 3
设 [tex=2.357x1.214]b+19PhVr4qu1uqfrbbodNg==[/tex] 是域 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 上线性空间 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 的两个真子空间 ( 即 [tex=2.786x1.214]2OQFgyX1n/0U9jfuDG8AuA==[/tex] ), 证明: [tex=4.5x1.214]zHn9rRqmMnIDW2iEd9bFUI4woLinbLyKrYc04YIkanw=[/tex]
- 4
设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是域 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 上 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 维线性空间 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 上的一个线性变换. 证明: 如果 [tex=7.714x1.357]Hy12kln5BWS6e/nYifqIO/MSAAIvZDzHo2Dmkm4Xohh+VhyIGmOJYdo4O4dthkqDWTDR08DSVglZkbGWYr+Lgg==[/tex] 则 [tex=3.857x1.357]fkYeizFVWvHVWBazq51W8CdeU38AOw9+uWsvQC06yI0=[/tex] 这里 [tex=1.929x1.357]aMCa7j968L/hYU5HJBvp5g==[/tex] 是 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 与 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 的一个最大公因式.