• 2022-11-04
    设 [tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex] 是域 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 上 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 维线性空间 [tex=0.643x1.0]hup1TbyhwSEMuEHzxR4LKA==[/tex] 上的一个双线性函数. 证明:[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex] 是非退化的充分必要条件为 [tex=1.071x1.286]TQ6W7NdShUMaJKPfU8Z7VA==[/tex] ( 或 [tex=1.143x1.286]Pw1prNL49Z9lVuhmkR+qWg==[/tex] )是线性空间 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 到 [tex=1.214x1.071]XUYOLSDZxfQs8dKdxxKfFw==[/tex] 的同构映射.
  • 解:利用结论: [tex=11.571x1.286]uqh+oOvD2P9iqZ7dD7XO1Pxoiutwq5iVE075Hqhv3TT1OeepqHgvwCILRZrUYMCEfRsU5ALvS+o8VX502YXn46kpfJvAnww143GLnce3Ybk=[/tex]; 去证 [tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex] 非退化 [tex=3.214x1.286]+EH8QzD9cG76c5hDH0qOnkaFE0c7RE8n2DjdvgSd6rg=[/tex] 是单射, 然后用推论 4  即可,推论4如下: 如果 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 和 [tex=1.071x1.143]SEwIem1RXUAaU4aCzKG5tQ==[/tex] 都是域 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 上 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 维线性空间, 且 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 到 [tex=1.071x1.143]SEwIem1RXUAaU4aCzKG5tQ==[/tex] 的一个线性映射, 则 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是单射当且仅当 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是满射.

    举一反三

    内容

    • 0

      求下列线性空间 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 的维数:[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 是数域 [tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex] 上 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶对称矩阵全体组成的线性空间;

    • 1

      设[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex]为定义在[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]上以[tex=0.643x1.0]uPu/UBwxTDghY6MHYDLmcA==[/tex]为周期的函数,[tex=0.571x0.786]WLga5RWgrUta8vWDwROpYA==[/tex] 为实数.。证明 : 若[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex]在 [tex=3.429x1.357]yn+eS8j3jL70HAQbcELryg==[/tex]上有界,则[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex]在[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]上有界。

    • 2

      设 [tex=3.143x1.214]TGEECqmBKmzi6fwUq56UZg==[/tex] 都是域 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 上的线性空间, 并且 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 是有限维的. 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 到 [tex=0.714x1.0]X6uqj1A7AQmRFBpFsTbZTg==[/tex] 的一个线性映射, [tex=0.929x1.0]GTnOCR9hNPsOuxGSyBGTAE4D+bwdNZdKWKqAkIkho7A=[/tex] 是 [tex=0.714x1.0]X6uqj1A7AQmRFBpFsTbZTg==[/tex] 到 [tex=1.0x1.0]97Y4VMFIqE7cl6MEqnCpuw==[/tex] 的一个线性映射. 证明:[tex=20.214x1.357]FS7OZA/QB7C+VSLfh3qSHml3J36eT1fzanRn2SPZBMlHDoWfXsVTxEupwatQ872w+Ry/E91iqo1QY70oD5KrHZyAY7bKxHTCEAxrEKkuuwY9EXVhpfvislmuWyvh/1DwDmCNGltUOf+1rsBXVUVDsfQHUY808wP0MujXrZPcRDAqB/B6oy8bKuIeYNa1pjcyidih+u0c8/G1wWH/PlqGyepKB/xPHAVMzoXlLfDbh53N6KijN8t4FbNLPDXKXBai[/tex]

    • 3

      设[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]是一个数域。 [tex=0.5x1.214]xOiZa9kFnjYeHB3PTbO+3w==[/tex],[tex=7.857x1.357]jCWyoqjXrY64EOb88P87GtmT1ppj4w2rIYw7oajR7JlSwkMP50RE8fd9O3Yjq2IGHe0VdWmAlEPOZHH41RYPBQ==[/tex]是[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]上[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]元多项式。如果存在[tex=7.929x1.357]K9NuB0z4ZFKvKXN85JfwTG2/VEjcLuk2denP6+Ed3rIjwdG1gThUGJwgAT+5xkAYnLYSXxKjW8xCYuMrxpK/Jg==[/tex]使得[tex=2.357x1.214]zMwXmmQ73pXRZ5GcslRYtg==[/tex],那么就说[tex=0.5x1.0]wPh71/L+tm8emC/JD+8oZg==[/tex]是[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex]的一个因式。或者说[tex=0.5x1.0]wPh71/L+tm8emC/JD+8oZg==[/tex]整除[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex] 。证明,每一多项式[tex=0.5x1.214]xOiZa9kFnjYeHB3PTbO+3w==[/tex]都可以被零次多项式[tex=0.5x0.786]hycNLgozeED/VkKdun7zdA==[/tex]和[tex=0.929x1.214]qE81a7F6mpH3XmIybOXNkg==[/tex]整除,[tex=1.786x1.071]TDg6xaBHc6/pa1eoo+jeew==[/tex],[tex=2.286x1.214]OggZ4FPbHnwn3k+w+7vtVw==[/tex]。

    • 4

      求下列线性空间 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 的维数:[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 是数域 [tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex] 上 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶反对称矩阵全体组成的线性空间.