• 2022-06-09
    设[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是一个 21 阶的非循环群, 试问 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 有多少个 Sylow 3 子群?
  •  解 由 [tex=4.286x1.357]iB+jwAp4sivwoXa7dw5g+UnHh+aiH/3qlHbqQYElFms=[/tex] 知, [tex=6.071x1.214]w2oUEIwV6Vr1RxqvZisbt7V7bbZ0e1779VyuCUM63T8=[/tex] 或 [tex=0.786x1.0]ceedMVC66ztw63bvRXHb7g==[/tex]如果 [tex=3.071x1.214]O9mn4tdxxn9xiFjIhxyKkA==[/tex] 则由推广知, [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 为循环群, 与题设矛盾. 因此 [tex=2.786x1.214]sLaErbefP0VmxLdBox1FnA==[/tex], 即 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]有 7 个 Svlow 3 子群.

    内容

    • 0

      设[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶群且其不同的子群有不同的阶,试证:[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是循环群。

    • 1

       证明:群 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]仅有平凡子群的充分必要条件是[tex=3.071x1.357]lhn0XHWkDQjpgStNKz1WNg==[/tex] 或 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是素数阶循环群.

    • 2

       设 [tex=2.786x1.357]yD5alZ3X9bU+/DKNfWUhhw==[/tex] 为 18 阶循环群. 试求出 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 的全部生成元与全部子群,并证明 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的任何子群都是 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 的不变子群.

    • 3

      设[tex=2.929x1.357]R69oP1O5tGxNy/rzgfmU98XoEPpo9mDykzM0s1mhLKE=[/tex]为 6 阶循环群. 给出[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的一切生成元和[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的所有子群.

    • 4

      设[tex=0.857x1.0]aPLFPHMGSKDwulHSwLWugg==[/tex]是群[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的有限子群, [tex=2.786x1.357]gGafzCAY5HUDydhqr4pyuw==[/tex].假设[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]只有一个阶为[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]的子群, 证明:[tex=0.857x1.0]h610M+sGyf59WggKwaDo1Q==[/tex]是[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的正规子群.