设[tex=0.786x1.286]yokTf2U2Z7kNGUXMm22GjQ==[/tex],[tex=0.714x1.286]yQZEV57S9rHjYvgfJydTyg==[/tex]都是幺环,[tex=0.786x1.143]Fx9OZJkFOsEKWqHq2ldQJA==[/tex],[tex=0.5x1.0]oYgVDn+QZqcDCRxqEZwM2A==[/tex]分别为[tex=0.714x1.286]yQZEV57S9rHjYvgfJydTyg==[/tex]与[tex=0.786x1.286]yokTf2U2Z7kNGUXMm22GjQ==[/tex]的幺元,映射[tex=3.714x1.214]CvfCeDGXNyepssyzmki33HDVaWzCx2JS9WFNkB4Qk6Y=[/tex]是同态且[tex=3.643x1.429]yf5JDaNkdR3YDbV38a/wgh9R0HFW/7T44NIbm+zVfHU=[/tex],又设[tex=1.0x1.0]/4LSvKfNeQWJ+IvWbbbjdA==[/tex]是一个[tex=0.786x1.286]yokTf2U2Z7kNGUXMm22GjQ==[/tex]模,证明:[tex=2.857x1.143]ioqC9rRqzIAxmZ0sUU0HEQ==[/tex]到[tex=1.0x1.0]/4LSvKfNeQWJ+IvWbbbjdA==[/tex]映射[tex=6.0x1.357]0z0Id8cj43tSuGKa24+46oPjniVcoD2tN5HAEnuqk24=[/tex],[tex=2.357x1.286]NxjaiHDMvwiWn79bA8lJJQ==[/tex],[tex=2.857x1.286]rMPwe7sc/P6V7JoJW2PjKw==[/tex]使[tex=1.0x1.0]/4LSvKfNeQWJ+IvWbbbjdA==[/tex]成为[tex=0.714x1.286]yQZEV57S9rHjYvgfJydTyg==[/tex]模。
举一反三
- 设[tex=0.786x1.286]yokTf2U2Z7kNGUXMm22GjQ==[/tex]是幺环,[tex=1.0x1.0]/4LSvKfNeQWJ+IvWbbbjdA==[/tex]是[tex=0.786x1.286]yokTf2U2Z7kNGUXMm22GjQ==[/tex]模,证明有[tex=0.786x1.286]yokTf2U2Z7kNGUXMm22GjQ==[/tex]到[tex=2.857x1.0]gZKKn8bx7SReTyueuBzyNw==[/tex]的同态[tex=0.643x1.286]+RQz+inOZSqc5WvKyEpD0Q==[/tex],使[tex=4.071x1.357]8UEKPVSSj2+e/+BjOHZHQV3Qkso2t11O8sy3dSx5nBg=[/tex]。
- 设[tex=5.929x1.071]gAFI4ZzNAmjFfJAphmTsRQ==[/tex],若[tex=7.786x1.357]09fTpcwFMVcu1qrv9hyVbjaVP6Nu0Q7b0o9JCaEhfzk=[/tex],[tex=7.786x1.357]17Fg+KbtgLZdNaerla1J+g==[/tex],[tex=7.714x1.357]GzWWzGNDry0+/hdju2Gv5Q==[/tex],那么[tex=0.571x0.786]/uIIzJZ/1DPgc5sOsRpAXQ==[/tex],[tex=0.571x1.0]Tr41q2//n6lfFMLRmh8s0w==[/tex],[tex=0.5x0.786]rGd4FFr4Zsu+cuz6gxITMA==[/tex]的大小关系为 A: x<y<Z B: y<z<x C: z<x<y D: z<y<x E: 不能确定
- 求函数[tex=3.286x1.429]kdT+eIE7CHPynuN6CaN40g==[/tex](抛物线)隐函数的导数[tex=1.071x1.429]BUw1BPFU3fsJlAl/vt9M9w==[/tex]当x=2与y=4及当x=2与y=0时,[tex=0.786x1.357]Hq6bf3CacUy07X+VImUMaA==[/tex]等于什么?
- 设关系 [tex=0.786x1.286]yokTf2U2Z7kNGUXMm22GjQ==[/tex] 和 [tex=0.714x1.286]yQZEV57S9rHjYvgfJydTyg==[/tex] 的元组个数分别为 100 和 300 , 关系 [tex=0.714x1.286]atrPPistVyxj7cY8rjePCQ==[/tex] 是 [tex=0.786x1.286]yokTf2U2Z7kNGUXMm22GjQ==[/tex] 与 [tex=0.786x1.286]yokTf2U2Z7kNGUXMm22GjQ==[/tex] 的笛卡尔积,则 [tex=0.714x1.286]atrPPistVyxj7cY8rjePCQ==[/tex]的元组个数是 A: 400 B: 10000 C: 30000 D: 90000
- 由非空集合X的所有子集构成的集合称为X的幂集,记作[tex=1.143x1.214]6fgP1j+0v37iZFMJocAU+g==[/tex].(1)设X={a,b,c},求[tex=1.143x1.214]6fgP1j+0v37iZFMJocAU+g==[/tex].(2)设X是由n个元素组成的有限集,证明[tex=1.143x1.214]6fgP1j+0v37iZFMJocAU+g==[/tex]中含有[tex=1.0x1.0]j//x0/Z+ltpf5R8ThFOpMA==[/tex]个元素.