• 2021-04-14 问题

    分解因式()x()3()y()-()2()x()2()y()2()+()xy()3()正确的是A.()xy()(()x()+()y())()2()B.()xy()(()x()2()﹣()2()xy()+()y()2())()C.()xy()(()x()2()+2()xy()﹣()y()2())()D.()xy()(()x()﹣()y())()2

    分解因式()x()3()y()-()2()x()2()y()2()+()xy()3()正确的是A.()xy()(()x()+()y())()2()B.()xy()(()x()2()﹣()2()xy()+()y()2())()C.()xy()(()x()2()+2()xy()﹣()y()2())()D.()xy()(()x()﹣()y())()2

  • 2022-06-16 问题

    应力圆的半径是( )。 A: (σx +σy)/2 B: (σx -σy)/2 C: τxy D: sqrt( [(σx -σy)/2]^2 + τxy^2 )

    应力圆的半径是( )。 A: (σx +σy)/2 B: (σx -σy)/2 C: τxy D: sqrt( [(σx -σy)/2]^2 + τxy^2 )

  • 2022-06-05 问题

    设\(z = u{e^v}\),\(u = {x^2} + {y^2}\),\(v = xy\),则\( { { \partial z} \over {\partial x}}=\) A: \({e^{xy}}({x^2}y + {y^3} + 2x)\) B: \({e^{xy}}({x}y^2 + {y^3} + 2x)\) C: \({e^{xy}}({x}y + {y^3} + 2x)\) D: \({e^{xy}}({x^2}y + {y^2} + 2x)\)

    设\(z = u{e^v}\),\(u = {x^2} + {y^2}\),\(v = xy\),则\( { { \partial z} \over {\partial x}}=\) A: \({e^{xy}}({x^2}y + {y^3} + 2x)\) B: \({e^{xy}}({x}y^2 + {y^3} + 2x)\) C: \({e^{xy}}({x}y + {y^3} + 2x)\) D: \({e^{xy}}({x^2}y + {y^2} + 2x)\)

  • 2022-06-06 问题

    9. 已知函数$z=z(x,y)$由${{z}^{3}}-3xyz={{a}^{3}}$确定,则$\frac{{{\partial }^{2}}z}{\partial x\partial y}=$( ) A: $\frac{z({{z}^{4}}-2xy{{z}^{2}}-{{x}^{2}}{{y}^{2}})}{{{({{z}^{2}}-xy)}^{3}}}$ B: $\frac{z({{z}^{4}}-2xy{{z}^{2}}-xy)}{{{({{z}^{2}}-xy)}^{2}}}$ C: $\frac{z({{z}^{3}}-2xyz-{{x}^{2}}{{y}^{2}})}{{{({{z}^{2}}-xy)}^{3}}}$ D: $\frac{z({{z}^{3}}-2xy{{z}^{2}}-{{x}^{2}}y)}{{{({{z}^{2}}-xy)}^{3}}}$

    9. 已知函数$z=z(x,y)$由${{z}^{3}}-3xyz={{a}^{3}}$确定,则$\frac{{{\partial }^{2}}z}{\partial x\partial y}=$( ) A: $\frac{z({{z}^{4}}-2xy{{z}^{2}}-{{x}^{2}}{{y}^{2}})}{{{({{z}^{2}}-xy)}^{3}}}$ B: $\frac{z({{z}^{4}}-2xy{{z}^{2}}-xy)}{{{({{z}^{2}}-xy)}^{2}}}$ C: $\frac{z({{z}^{3}}-2xyz-{{x}^{2}}{{y}^{2}})}{{{({{z}^{2}}-xy)}^{3}}}$ D: $\frac{z({{z}^{3}}-2xy{{z}^{2}}-{{x}^{2}}y)}{{{({{z}^{2}}-xy)}^{3}}}$

  • 2022-06-05 问题

    设\(z = u{e^v}\),\(u = {x^2} + {y^2}\),\(v = xy\),则\( { { \partial z} \over {\partial y}}=\)( )。 A: \({e^{xy}}({x}y^2 + {x^3} + 2y)\) B: \({e^{xy}}({x^2}y + {x^3} + 2y)\) C: \({e^{xy}}({x}y^2 + {x^3} + 2x)\) D: \({e^{xy}}({x}y+ {x^3} + 2y)\)

    设\(z = u{e^v}\),\(u = {x^2} + {y^2}\),\(v = xy\),则\( { { \partial z} \over {\partial y}}=\)( )。 A: \({e^{xy}}({x}y^2 + {x^3} + 2y)\) B: \({e^{xy}}({x^2}y + {x^3} + 2y)\) C: \({e^{xy}}({x}y^2 + {x^3} + 2x)\) D: \({e^{xy}}({x}y+ {x^3} + 2y)\)

  • 2022-06-03 问题

    4.已知二元函数$z(x,y)$满足方程$\frac{{{\partial }^{2}}z}{\partial x\partial y}=x+y$,并且$z(x,0)=x,z(0,y)={{y}^{2}}$,则$z(x,y)=$( ) A: $\frac{1}{2}({{x}^{2}}y-x{{y}^{2}})+{{y}^{2}}+x$ B: $\frac{1}{2}({{x}^{2}}{{y}^{2}}+xy)+{{y}^{2}}+x$ C: ${{x}^{2}}{{y}^{2}}+{{y}^{2}}+x$ D: $\frac{1}{2}({{x}^{2}}y+x{{y}^{2}})+{{y}^{2}}+x$

    4.已知二元函数$z(x,y)$满足方程$\frac{{{\partial }^{2}}z}{\partial x\partial y}=x+y$,并且$z(x,0)=x,z(0,y)={{y}^{2}}$,则$z(x,y)=$( ) A: $\frac{1}{2}({{x}^{2}}y-x{{y}^{2}})+{{y}^{2}}+x$ B: $\frac{1}{2}({{x}^{2}}{{y}^{2}}+xy)+{{y}^{2}}+x$ C: ${{x}^{2}}{{y}^{2}}+{{y}^{2}}+x$ D: $\frac{1}{2}({{x}^{2}}y+x{{y}^{2}})+{{y}^{2}}+x$

  • 2021-04-14 问题

    已知:()x()-()y()=()1(),()z()-()y()=()2(),则()xy()+()yz()+()zx()-()x()2()-()y()2()-()z()2()的值是

    已知:()x()-()y()=()1(),()z()-()y()=()2(),则()xy()+()yz()+()zx()-()x()2()-()y()2()-()z()2()的值是

  • 2022-06-19 问题

    方程$(x^2+1)(y^2-1) + xy y' = 0$的通解为 A: $y^2 = C \frac{e^{-x^2}}{x^2}$ B: $y = C \frac{e^{-x^2}}{x^2}$ C: $y^2 = C \frac{e^{-x^2}}{x^2}+1$ D: $y=C \frac{e^{-x^2}}{x^2}+1$

    方程$(x^2+1)(y^2-1) + xy y' = 0$的通解为 A: $y^2 = C \frac{e^{-x^2}}{x^2}$ B: $y = C \frac{e^{-x^2}}{x^2}$ C: $y^2 = C \frac{e^{-x^2}}{x^2}+1$ D: $y=C \frac{e^{-x^2}}{x^2}+1$

  • 2022-06-11 问题

    (5). 由随机事件的分解性质,事件 \( \{XY=2\} \) 等价于( )。 A: \( \{X=1,Y=2\} \) B: \( \{X=2,Y=1\} \) C: \( \{X=1,Y=2\}\cap \{X=2,Y=1\} \) D: \( \{X=1,Y=2\}\cup \{X=2,Y=1\} \)

    (5). 由随机事件的分解性质,事件 \( \{XY=2\} \) 等价于( )。 A: \( \{X=1,Y=2\} \) B: \( \{X=2,Y=1\} \) C: \( \{X=1,Y=2\}\cap \{X=2,Y=1\} \) D: \( \{X=1,Y=2\}\cup \{X=2,Y=1\} \)

  • 2022-06-09 问题

    下列函数中( )不是方程\( y' + xy = 0 \)的解。 A: \( y = {e^{ - { { {x^2}} \over 2}}} \) B: \( \ln \left| y \right| = - { { {x^2}} \over 2} \) C: \( y = {e^{ - { { {x^2}} \over 2}}} + 2 \) D: \( \ln \left| y \right| = - { { {x^2}} \over 2} +2\)

    下列函数中( )不是方程\( y' + xy = 0 \)的解。 A: \( y = {e^{ - { { {x^2}} \over 2}}} \) B: \( \ln \left| y \right| = - { { {x^2}} \over 2} \) C: \( y = {e^{ - { { {x^2}} \over 2}}} + 2 \) D: \( \ln \left| y \right| = - { { {x^2}} \over 2} +2\)

  • 1 2 3 4 5 6 7 8 9 10