f(x)在[0,1]上有连续的二阶导数,f(0)=f(1)=0,任意x属于[0,...715af2ac3f81f8.png"]
f(x)在[0,1]上有连续的二阶导数,f(0)=f(1)=0,任意x属于[0,...715af2ac3f81f8.png"]
设f(x)=x2+bx+x满足关系式f(1+x)=f(1-x),则下述结论中,正确的是( ). A: f(0)>f(1)>f(3) B: f(1)>f(0)>f(3) C: f(3)>f(1)>f(0) D: f(3)>f(0)>f(1) E: f(1)>f(3)>f(0)
设f(x)=x2+bx+x满足关系式f(1+x)=f(1-x),则下述结论中,正确的是( ). A: f(0)>f(1)>f(3) B: f(1)>f(0)>f(3) C: f(3)>f(1)>f(0) D: f(3)>f(0)>f(1) E: f(1)>f(3)>f(0)
已知函数f(x)是定义在实数集R上的奇函数,且f(x)在[3,5]上是增函数,若f(5)=-2,则f(-5)、f(-3)、f(0)的大小关系是( ). A: f(0)<(-5)<f(-3) B: f(-5)<f(-3)<f(0) C: f(-3)<f(-5)<f(0) D: f(0)<f(-3)<f(-5)
已知函数f(x)是定义在实数集R上的奇函数,且f(x)在[3,5]上是增函数,若f(5)=-2,则f(-5)、f(-3)、f(0)的大小关系是( ). A: f(0)<(-5)<f(-3) B: f(-5)<f(-3)<f(0) C: f(-3)<f(-5)<f(0) D: f(0)<f(-3)<f(-5)
已知f(x)=ax2-3ax+a2-1(a<0),则f(3),f(-3),f(32)从小到大的顺序是f(-3)<f(3)<f(32)f(-3)<f(3)<f(32).
已知f(x)=ax2-3ax+a2-1(a<0),则f(3),f(-3),f(32)从小到大的顺序是f(-3)<f(3)<f(32)f(-3)<f(3)<f(32).
利用04法计算得到下列指标B的权重值为( )。 A: 指 标 B: A C: B D: C E: D F: A B C D G: - 2 3 1 H: 2 - 1 2 I: 1 3 - 0 J: 3 2 4 -
利用04法计算得到下列指标B的权重值为( )。 A: 指 标 B: A C: B D: C E: D F: A B C D G: - 2 3 1 H: 2 - 1 2 I: 1 3 - 0 J: 3 2 4 -
羊的齿式为 A: 2(0 0 3 0/ 4 0 3 0)=20 B: 2(0 0 3 3/ 4 0 3 3)=32 C: 2(4 0 3 0/ 4 0 3 0)=28 D: 2(4 0 3 3/ 4 0 3 3)=40
羊的齿式为 A: 2(0 0 3 0/ 4 0 3 0)=20 B: 2(0 0 3 3/ 4 0 3 3)=32 C: 2(4 0 3 0/ 4 0 3 0)=28 D: 2(4 0 3 3/ 4 0 3 3)=40
图示桁架中1、2、3、4杆的内力为()。 A: F=F=0,F=F不等于0 B: F=F不等于0,F=F=0 C: F=F不等于0,F=F不等于0 D: F=F=F=F=0
图示桁架中1、2、3、4杆的内力为()。 A: F=F=0,F=F不等于0 B: F=F不等于0,F=F=0 C: F=F不等于0,F=F不等于0 D: F=F=F=F=0
设,求f(3),f(0),f(-0.5).
设,求f(3),f(0),f(-0.5).
随机变量X在区间(-1,2)上均匀分布,F(x)是X的分布函数,则以下结果正确的是 A: F(0.5)=0.5 B: F(1)=2/3 C: F(0)=0 D: F(-0.5)=0.5 E: F(1)=1/3 F: F(1.5)=3/4 G: F(2)=0 H: F(3)=0
随机变量X在区间(-1,2)上均匀分布,F(x)是X的分布函数,则以下结果正确的是 A: F(0.5)=0.5 B: F(1)=2/3 C: F(0)=0 D: F(-0.5)=0.5 E: F(1)=1/3 F: F(1.5)=3/4 G: F(2)=0 H: F(3)=0
若奇函数f(x)在(0,+∞)上是增函数,又f(-3)=0,则x|x·f(x)<0可表述为()。 A: (-3,0)∪(3,+∞) B: (-3,0)∪(0,3) C: (-∞,-3)∪(3,+∞) D: (-∞,-3)∪(0,3)
若奇函数f(x)在(0,+∞)上是增函数,又f(-3)=0,则x|x·f(x)<0可表述为()。 A: (-3,0)∪(3,+∞) B: (-3,0)∪(0,3) C: (-∞,-3)∪(3,+∞) D: (-∞,-3)∪(0,3)