(2)、\(X\)的三阶中心矩为 A: \(0\) B: \(\frac{1}{12}\) C: \(\frac{1}{6}\) D: \(\frac{1}{3}\)
(2)、\(X\)的三阶中心矩为 A: \(0\) B: \(\frac{1}{12}\) C: \(\frac{1}{6}\) D: \(\frac{1}{3}\)
设随机变量X的数学期望与方差均为\(20\),试给出$P(0 A: \(\frac{1}{20}\) B: \(\frac{1}{10}\) C: \(\frac{9}{10}\) D: \(\frac{19}{20}\)
设随机变量X的数学期望与方差均为\(20\),试给出$P(0 A: \(\frac{1}{20}\) B: \(\frac{1}{10}\) C: \(\frac{9}{10}\) D: \(\frac{19}{20}\)
设随机变量X的数学期望与方差均为\(20\),试给出\(P(0 A: \(\frac{1}{20}\) B: \(\frac{1}{10}\) C: \(\frac{9}{10}\) D: \(\frac{19}{20}\)
设随机变量X的数学期望与方差均为\(20\),试给出\(P(0 A: \(\frac{1}{20}\) B: \(\frac{1}{10}\) C: \(\frac{9}{10}\) D: \(\frac{19}{20}\)
连续地掷一枚骰子80次,求点数之和超过300的概率. A: $1-\Phi(\frac{296.5}{\sqrt{35/12}})$ B: $\Phi(\frac{20}{\sqrt{700/3}})$ C: $1-\Phi(\frac{20}{\sqrt{700/3}})$ D: $\Phi(\frac{296.5}{\sqrt{35/12}})$
连续地掷一枚骰子80次,求点数之和超过300的概率. A: $1-\Phi(\frac{296.5}{\sqrt{35/12}})$ B: $\Phi(\frac{20}{\sqrt{700/3}})$ C: $1-\Phi(\frac{20}{\sqrt{700/3}})$ D: $\Phi(\frac{296.5}{\sqrt{35/12}})$
如果把积分区间二等分,利用Simpson's \(\frac{1}{3}\) rule 求得的\(\int_{0}^{16} f(x)dx\)的值是20, 那么把积分区间分成相等的4个区间时,利用Simpson's \(\frac{1}{3}\) rule求得的近似值是多少? ( \(\int_{0}^{16} f(x)dx\)의 부분구간의 개수를 2개로 설정한 Simpson's \(\frac{1}{3}\) rule로 구한 근삿값이 20일때, 부분구간의 개수를 4개로 설정한 Simpson's \(\frac{1}{3}\) rule 로 구한 근삿값을 구하시오) A: 20 + \(\frac{8}{3}\) ( 2f(4) - f(8) + 2f(12) ) B: 10 + \(\frac{8}{3}\) ( 2f(4) - f(8) + 2f(12) ) C: 20 + \(\frac{8}{3}\) ( f(4) - f(8) + 2f(12) ) D: 10 + \(\frac{8}{3}\) ( 2f(4) - 2f(8) + f(12) ) E: 20 + \(\frac{8}{3}\) ( f(4) - f(8) + f(12) )
如果把积分区间二等分,利用Simpson's \(\frac{1}{3}\) rule 求得的\(\int_{0}^{16} f(x)dx\)的值是20, 那么把积分区间分成相等的4个区间时,利用Simpson's \(\frac{1}{3}\) rule求得的近似值是多少? ( \(\int_{0}^{16} f(x)dx\)의 부분구간의 개수를 2개로 설정한 Simpson's \(\frac{1}{3}\) rule로 구한 근삿값이 20일때, 부분구간의 개수를 4개로 설정한 Simpson's \(\frac{1}{3}\) rule 로 구한 근삿값을 구하시오) A: 20 + \(\frac{8}{3}\) ( 2f(4) - f(8) + 2f(12) ) B: 10 + \(\frac{8}{3}\) ( 2f(4) - f(8) + 2f(12) ) C: 20 + \(\frac{8}{3}\) ( f(4) - f(8) + 2f(12) ) D: 10 + \(\frac{8}{3}\) ( 2f(4) - 2f(8) + f(12) ) E: 20 + \(\frac{8}{3}\) ( f(4) - f(8) + f(12) )
(3). 设随机变量 \( X \) 的数学期望 \( E(X)=\mu \),方差 \( D(X)=\sigma ^2 \),\( P\{\left|<br/>{X-\mu } \right|< 4\sigma \}\ge \)( )。 A: \( \frac{8}{9} \) B: \( \frac{15}{16} \) C: \( \frac{9}{10} \) D: \( \frac{1}{10} \)
(3). 设随机变量 \( X \) 的数学期望 \( E(X)=\mu \),方差 \( D(X)=\sigma ^2 \),\( P\{\left|<br/>{X-\mu } \right|< 4\sigma \}\ge \)( )。 A: \( \frac{8}{9} \) B: \( \frac{15}{16} \) C: \( \frac{9}{10} \) D: \( \frac{1}{10} \)
(1). 某人射击直到中靶为止,已知每次射击中靶的概率为0.25。 则射击次数的数学期望与方差分别为 ( )。 A: \(\frac{4}{3}\mbox{ 与 }\frac{4}{9} \) B: \(\frac{4}{3}\mbox{ 与 }12 \) C: \(4\mbox{ 与 }\frac{4}{9} \) D: \( 4\mbox{ 与 }12 \)
(1). 某人射击直到中靶为止,已知每次射击中靶的概率为0.25。 则射击次数的数学期望与方差分别为 ( )。 A: \(\frac{4}{3}\mbox{ 与 }\frac{4}{9} \) B: \(\frac{4}{3}\mbox{ 与 }12 \) C: \(4\mbox{ 与 }\frac{4}{9} \) D: \( 4\mbox{ 与 }12 \)
题目包含多个选项,但学生只能选择一个答案。1、连续地掷一枚骰子80次,求点数之和超过300的概率. A: $1-\Phi(\frac{296.5}{\sqrt{35/12}})$ B: $\Phi(\frac{20}{\sqrt{700/3}})$ C: $1-\Phi(\frac{20}{\sqrt{700/3}})$ D: $\Phi(\frac{296.5}{\sqrt{35/12}})$
题目包含多个选项,但学生只能选择一个答案。1、连续地掷一枚骰子80次,求点数之和超过300的概率. A: $1-\Phi(\frac{296.5}{\sqrt{35/12}})$ B: $\Phi(\frac{20}{\sqrt{700/3}})$ C: $1-\Phi(\frac{20}{\sqrt{700/3}})$ D: $\Phi(\frac{296.5}{\sqrt{35/12}})$
\(\int { { {\tan }^{10}}x { { \sec }^{2}}xdx}\)=( ) A: \(-\frac{1}{11} { { \tan }^{11}}x+C\) B: \(\frac{1}{11} { { \tan }^{11}}x+C\) C: \(\frac{1}{11} { { \cot }^{11}}x+C\) D: \(-\frac{1}{11} { { \cot }^{11}}x+C\)
\(\int { { {\tan }^{10}}x { { \sec }^{2}}xdx}\)=( ) A: \(-\frac{1}{11} { { \tan }^{11}}x+C\) B: \(\frac{1}{11} { { \tan }^{11}}x+C\) C: \(\frac{1}{11} { { \cot }^{11}}x+C\) D: \(-\frac{1}{11} { { \cot }^{11}}x+C\)
\(已知L是抛物线y=x^2上点O(0,0)与点A(1,1)之间的一段弧,则\int_{L}\sqrt{y}ds=(\,)\) A: \[\frac{1}{12}(5\sqrt{5}-1)\] B: \[\frac{1}{12}(3\sqrt{3}-1)\] C: \[\frac{1}{13}(5\sqrt{5}-1)\] D: \[\frac{1}{13}(3\sqrt{3}-1)\]
\(已知L是抛物线y=x^2上点O(0,0)与点A(1,1)之间的一段弧,则\int_{L}\sqrt{y}ds=(\,)\) A: \[\frac{1}{12}(5\sqrt{5}-1)\] B: \[\frac{1}{12}(3\sqrt{3}-1)\] C: \[\frac{1}{13}(5\sqrt{5}-1)\] D: \[\frac{1}{13}(3\sqrt{3}-1)\]