下列函数的导数[img=281x27]1802f62346026a9.png[/img] A: g'(x)=3 B: g'(x)=-3 C: g'(x)=9 D: g'(x)=-9
下列函数的导数[img=281x27]1802f62346026a9.png[/img] A: g'(x)=3 B: g'(x)=-3 C: g'(x)=9 D: g'(x)=-9
同时掷2颗均匀骰子,X表示点数大于4出现的个数,则以下结果正确的是 A: X服从二项分布 B: P(X=0)=P(X=1) C: P(X=1)=4/9 D: P(X=0)=1/9 E: P(X=2)=4/9 F: P(X>;0)=1 G: P(X<;2)=5/9 H: P(X>;1)>;0.5
同时掷2颗均匀骰子,X表示点数大于4出现的个数,则以下结果正确的是 A: X服从二项分布 B: P(X=0)=P(X=1) C: P(X=1)=4/9 D: P(X=0)=1/9 E: P(X=2)=4/9 F: P(X>;0)=1 G: P(X<;2)=5/9 H: P(X>;1)>;0.5
【单选题】若 f ( x ) = ( x − 1 ) x 2 − 1 2 , g ( x ) = x − 1 x + 1 ,则? A. f ( x ) = g ( x ) "> f ( x ) = g ( x ) B. lim x → 1 f ( x ) = g ( x ) "> lim x → 1 f ( x ) = g ( x ) C. lim x → 1 f ( x ) = lim x → 1 g ( x ) "> lim x → 1 f ( x ) = lim x → 1 g ( x ) D. 以上等式均不成立
【单选题】若 f ( x ) = ( x − 1 ) x 2 − 1 2 , g ( x ) = x − 1 x + 1 ,则? A. f ( x ) = g ( x ) "> f ( x ) = g ( x ) B. lim x → 1 f ( x ) = g ( x ) "> lim x → 1 f ( x ) = g ( x ) C. lim x → 1 f ( x ) = lim x → 1 g ( x ) "> lim x → 1 f ( x ) = lim x → 1 g ( x ) D. 以上等式均不成立
以4,9,1为为插值节点,求\(\sqrt x \)的lagrange的插值多项式 A: \( {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) + {1 \over {24}}(x - 4)(x - 9)\) B: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) + {1 \over {24}}(x - 4)(x - 9)\) C: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x +1) + {1 \over {24}}(x - 4)(x - 9)\) D: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) - {1 \over {24}}(x - 4)(x - 9)\)
以4,9,1为为插值节点,求\(\sqrt x \)的lagrange的插值多项式 A: \( {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) + {1 \over {24}}(x - 4)(x - 9)\) B: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) + {1 \over {24}}(x - 4)(x - 9)\) C: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x +1) + {1 \over {24}}(x - 4)(x - 9)\) D: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) - {1 \over {24}}(x - 4)(x - 9)\)
下列推导正确的是 。 A: (1) F(x)→G(x) 前提引入 (2)∃xF(x)→G(x) (1)EG B: (1)F(a)→G(x) 前提引入 (2)∃x(F(x)→G(x)) (1)EG C: (1) F(a)→G(x) 前提引入 (2)∃y(F(y)→G(x)) (1)EG D: (1) F(a)→G(x) 前提引入 (2)∃xF(x)→G(x) (1)EG
下列推导正确的是 。 A: (1) F(x)→G(x) 前提引入 (2)∃xF(x)→G(x) (1)EG B: (1)F(a)→G(x) 前提引入 (2)∃x(F(x)→G(x)) (1)EG C: (1) F(a)→G(x) 前提引入 (2)∃y(F(y)→G(x)) (1)EG D: (1) F(a)→G(x) 前提引入 (2)∃xF(x)→G(x) (1)EG
若$(f(x),g(x))=1,(f(x),h(x))=1$,则下面结论不正确的是( )。 A: $(f(x),f(x)+g(x))=1;$ B: $(f(x),h(x)+g(x))=1;$ C: $(f(x),h(x)g(x))=1;$ D: $(f(x)g(x),f(x)+g(x))=1.$
若$(f(x),g(x))=1,(f(x),h(x))=1$,则下面结论不正确的是( )。 A: $(f(x),f(x)+g(x))=1;$ B: $(f(x),h(x)+g(x))=1;$ C: $(f(x),h(x)g(x))=1;$ D: $(f(x)g(x),f(x)+g(x))=1.$
设f(x),g(x)是恒不为零的可导函数,且f’(x)g(x)-f(x)g’(x)>0,则当0<x<1时()。 A: f(x)g(x)>f(1)g(1) B: f(x)g(x)>f(0)g(0) C: f(x)g(1)<f(1)g(x) D: f(x)g(0)<f(0)g(x)
设f(x),g(x)是恒不为零的可导函数,且f’(x)g(x)-f(x)g’(x)>0,则当0<x<1时()。 A: f(x)g(x)>f(1)g(1) B: f(x)g(x)>f(0)g(0) C: f(x)g(1)<f(1)g(x) D: f(x)g(0)<f(0)g(x)
If<em>g</em>(<em>f</em>(<em>x</em>))=2<em>x</em>+1and<em>f</em>(<em>x</em>)=-1/4<em>x</em>-1,then<em>g</em>(<em>x</em>)= A: -8/7 B: 8<em>x</em>+9 C: 1/4(2<em>x</em>+1) D: 8<em>x</em>-8 E: 8<em>x</em>
If<em>g</em>(<em>f</em>(<em>x</em>))=2<em>x</em>+1and<em>f</em>(<em>x</em>)=-1/4<em>x</em>-1,then<em>g</em>(<em>x</em>)= A: -8/7 B: 8<em>x</em>+9 C: 1/4(2<em>x</em>+1) D: 8<em>x</em>-8 E: 8<em>x</em>
互素多项式的性质,(f(x),h(x))=1,(g(x),h(x))=1,则有(f(x)g(x),h(x))=1成立
互素多项式的性质,(f(x),h(x))=1,(g(x),h(x))=1,则有(f(x)g(x),h(x))=1成立
若(f(x),g(x))=1,则(cf(x),g(x))=1,其中c是任意常数。
若(f(x),g(x))=1,则(cf(x),g(x))=1,其中c是任意常数。