\(\int_{-\sqrt{2}}^{\sqrt{2}}{\sqrt{8-2 { { y}^{2}}}dy}\)=( )。 A: \(\sqrt{2}(\pi -2)\) B: \(\sqrt{2}(\pi +2)\) C: \(2\sqrt{2}(\pi +2)\) D: \(2\sqrt{2}(\pi -2)\)
\(\int_{-\sqrt{2}}^{\sqrt{2}}{\sqrt{8-2 { { y}^{2}}}dy}\)=( )。 A: \(\sqrt{2}(\pi -2)\) B: \(\sqrt{2}(\pi +2)\) C: \(2\sqrt{2}(\pi +2)\) D: \(2\sqrt{2}(\pi -2)\)
函数\(z = {e^ { { x^2} - 2y}}\)的全微分为 A: \(<br/>dz = 2x{e^ { { x^2} - 2y}}dx +2{e^ { { x^2} - 2y}}dy\) B: \(<br/>dz = 2x{e^ { { x^2} - 2y}}dx - 2{e^ { { x^2} - 2y}}dy\) C: \(<br/>dz = 2x{e^ { { x^2} - 2y}}dy+ 2{e^ { { x^2} - 2y}}dx\) D: \(<br/>dz = 2x{e^ { { x^2} - 2y}}dy - 2{e^ { { x^2} - 2y}}dx\)
函数\(z = {e^ { { x^2} - 2y}}\)的全微分为 A: \(<br/>dz = 2x{e^ { { x^2} - 2y}}dx +2{e^ { { x^2} - 2y}}dy\) B: \(<br/>dz = 2x{e^ { { x^2} - 2y}}dx - 2{e^ { { x^2} - 2y}}dy\) C: \(<br/>dz = 2x{e^ { { x^2} - 2y}}dy+ 2{e^ { { x^2} - 2y}}dx\) D: \(<br/>dz = 2x{e^ { { x^2} - 2y}}dy - 2{e^ { { x^2} - 2y}}dx\)
z=cos(xy+y^2)()的全微分为()(2.0分)A.()dz=-sin(xy+y^2)(dx+dy)()B.()dz=-sin(xy+y^2)[ydx+(x+2y)dy]()C.()dz=-sin(xy+y^2)(y^2dx+xdy)()D.()dz=-sin(xy+y^2)[xydx+(x+y^2)dy]
z=cos(xy+y^2)()的全微分为()(2.0分)A.()dz=-sin(xy+y^2)(dx+dy)()B.()dz=-sin(xy+y^2)[ydx+(x+2y)dy]()C.()dz=-sin(xy+y^2)(y^2dx+xdy)()D.()dz=-sin(xy+y^2)[xydx+(x+y^2)dy]
\( \int_0^1 {dx} \int_ { { x^2}}^x { { {\left( { { x^2} + {y^2}} \right)}^{ - {1 \over 2}}}dy} \) =( ) A: \( \sqrt 2 + 1 \) B: \( \sqrt 2 - 1 \) C: \( \sqrt 2 \) D: \( \pi \)
\( \int_0^1 {dx} \int_ { { x^2}}^x { { {\left( { { x^2} + {y^2}} \right)}^{ - {1 \over 2}}}dy} \) =( ) A: \( \sqrt 2 + 1 \) B: \( \sqrt 2 - 1 \) C: \( \sqrt 2 \) D: \( \pi \)
急设x=2t^(2)-1,y=根号(1+t^2).求dy/dx和d^2y/dx^2
急设x=2t^(2)-1,y=根号(1+t^2).求dy/dx和d^2y/dx^2
y=cos(3x²-2),求dy
y=cos(3x²-2),求dy
设y=x³,则dy|x=2
设y=x³,则dy|x=2
dy/dx=x^2+y^2,求微分方程
dy/dx=x^2+y^2,求微分方程
求下列微分方程的通解,xdy/dx=(yIn^2)y,[(y+1)^2]dy/dx+x^3=0,dy/dx=2^(x+y),6x+y
求下列微分方程的通解,xdy/dx=(yIn^2)y,[(y+1)^2]dy/dx+x^3=0,dy/dx=2^(x+y),6x+y
下列方程中,不是全微分方程的为( )。 A: \(\left( {3{x^2} + 6x{y^2}} \right)dx + \left( {6{x^2}y + 4{y^2}} \right)dy = 0\) B: \({e^y}dx + \left( {x \cdot {e^y} - 2y} \right)dy = 0\) C: \(y\left( {x - 2y} \right)dx - {x^2}dy = 0\) D: \(\left( { { x^2} - y} \right)dx - xdy = 0\)
下列方程中,不是全微分方程的为( )。 A: \(\left( {3{x^2} + 6x{y^2}} \right)dx + \left( {6{x^2}y + 4{y^2}} \right)dy = 0\) B: \({e^y}dx + \left( {x \cdot {e^y} - 2y} \right)dy = 0\) C: \(y\left( {x - 2y} \right)dx - {x^2}dy = 0\) D: \(\left( { { x^2} - y} \right)dx - xdy = 0\)