函数\(y = 2{x^{ - 3}}{\rm{ - }}3{x^2}\)的导数为( ). A: \( - 6{x^{ - 4}} - 6x\) B: \( - 6{x^{ - 4}} + 6x\) C: \( - 6{x^{ - 3}} - 6{x^3}\) D: \( - 6{x^{ - 3}} + 6{x^3}\)
函数\(y = 2{x^{ - 3}}{\rm{ - }}3{x^2}\)的导数为( ). A: \( - 6{x^{ - 4}} - 6x\) B: \( - 6{x^{ - 4}} + 6x\) C: \( - 6{x^{ - 3}} - 6{x^3}\) D: \( - 6{x^{ - 3}} + 6{x^3}\)
设\(D = \left\{ {(x,y)\left| { { x^2} + {y^2} \le 4,x \ge 0,y \ge 0} \right.} \right\}\),则\(\int\!\!\!\int\limits_D {(x + y)} d\sigma = \) A: \(0\) B: \( { { 8} \over 3}\) C: \( { { 16} \over 3}\) D: \( { { 32} \over 3}\)
设\(D = \left\{ {(x,y)\left| { { x^2} + {y^2} \le 4,x \ge 0,y \ge 0} \right.} \right\}\),则\(\int\!\!\!\int\limits_D {(x + y)} d\sigma = \) A: \(0\) B: \( { { 8} \over 3}\) C: \( { { 16} \over 3}\) D: \( { { 32} \over 3}\)
执行下列程序段后,的结果是( )。 x = 3: Y = 6 Z = x > Y Print x; Y; Z A: 3 3 6 B: 3 3 3 C: 3 6 FALSE D: FALSE FALSE
执行下列程序段后,的结果是( )。 x = 3: Y = 6 Z = x > Y Print x; Y; Z A: 3 3 6 B: 3 3 3 C: 3 6 FALSE D: FALSE FALSE
求微分方程[img=372x60]17da65376dc1787.jpg[/img]的通解。 ( ) A: C26*exp(3*x) + (x*exp(3*x)*(x + 1)^2)/2 + C27*x*exp(3*x) - (x^2*exp(3*x)*(2*x + 3))/6 B: C26*exp(3*x) + C27*x*exp(3*x) - (x^2*exp(3*x)*(2*x + 3))/6 C: C26*exp(3*x) + (x*exp(3*x)*(x + 1)^2)/2 D: C27*x*exp(3*x) - (x^2*exp(3*x)*(2*x + 3))/6
求微分方程[img=372x60]17da65376dc1787.jpg[/img]的通解。 ( ) A: C26*exp(3*x) + (x*exp(3*x)*(x + 1)^2)/2 + C27*x*exp(3*x) - (x^2*exp(3*x)*(2*x + 3))/6 B: C26*exp(3*x) + C27*x*exp(3*x) - (x^2*exp(3*x)*(2*x + 3))/6 C: C26*exp(3*x) + (x*exp(3*x)*(x + 1)^2)/2 D: C27*x*exp(3*x) - (x^2*exp(3*x)*(2*x + 3))/6
【单选题】假设 int x=3,y=6; 则语句 printf("x=%d,y=%d",x,y); 的输出结果是()? A. 3,6 B. x=3,y=6 C. "x=3,y=6" D. x=3 y=6
【单选题】假设 int x=3,y=6; 则语句 printf("x=%d,y=%d",x,y); 的输出结果是()? A. 3,6 B. x=3,y=6 C. "x=3,y=6" D. x=3 y=6
利用性质6(估值定理)估计积分\(\int_1^4 {({x^2} + 1)} dx\)的值为( )。 A: [3, 27] B: [3, 48] C: [6, 51] D: [6, 45]
利用性质6(估值定理)估计积分\(\int_1^4 {({x^2} + 1)} dx\)的值为( )。 A: [3, 27] B: [3, 48] C: [6, 51] D: [6, 45]
函数\(y = {x^{ - 4}}{\rm{ + }}2{x^3} - 2x\)的导数为( ). A: \(4{x^3} + 6{x^2} - 2\) B: \( - 4{x^{ - 5}} + 6{x^2} - 2\) C: \( - 4{x^{ - 3}} + 6{x^2} - 2\) D: \( - 4{x^3} + 6{x^2} - 2\)
函数\(y = {x^{ - 4}}{\rm{ + }}2{x^3} - 2x\)的导数为( ). A: \(4{x^3} + 6{x^2} - 2\) B: \( - 4{x^{ - 5}} + 6{x^2} - 2\) C: \( - 4{x^{ - 3}} + 6{x^2} - 2\) D: \( - 4{x^3} + 6{x^2} - 2\)
应用Matlab软件计算行列式[img=110x88]17da5d7b00219d6.png[/img]为( ). A: x^2 - 6*x^2*y^2 + 8*x*y^3 - 3*y^4 B: x^3 - 6*x^2*y^2 + 8*x*y^3 - 3*y^4 C: x^4 - 6*x^2*y^2 + 8*x*y^3 - 3*y^4 D: x^5- 6*x^2*y^2 + 8*x*y^3 - 3*y^4
应用Matlab软件计算行列式[img=110x88]17da5d7b00219d6.png[/img]为( ). A: x^2 - 6*x^2*y^2 + 8*x*y^3 - 3*y^4 B: x^3 - 6*x^2*y^2 + 8*x*y^3 - 3*y^4 C: x^4 - 6*x^2*y^2 + 8*x*y^3 - 3*y^4 D: x^5- 6*x^2*y^2 + 8*x*y^3 - 3*y^4
估计积分\(\int_1^4 {({x^2} + 1)} dx\)的值为( )。(利用估值定理) A: [3, 27] B: [3, 48] C: [6, 51] D: [6, 45]
估计积分\(\int_1^4 {({x^2} + 1)} dx\)的值为( )。(利用估值定理) A: [3, 27] B: [3, 48] C: [6, 51] D: [6, 45]
求函数$y = {{1 + \root 3 \of {{x^2}} - \sqrt {2x} } \over {\sqrt x }}$的导数$y' = $( ) A: $ {1 \over 2}{x^{ - {3 \over 2}}} + {1 \over 6}{x^{ - {5 \over 6}}}$ B: $ - {1 \over 2}{x^{ - {3 \over 2}}} + {1 \over 6}{x^{ - {5 \over 6}}}$ C: ${1 \over 2}{x^{ - {3 \over 2}}} - {1 \over 6}{x^{ - {5 \over 6}}}$ D: ${1 \over 3}{x^{ - {3 \over 2}}} - {1 \over 6}{x^{ - {5 \over 6}}}$
求函数$y = {{1 + \root 3 \of {{x^2}} - \sqrt {2x} } \over {\sqrt x }}$的导数$y' = $( ) A: $ {1 \over 2}{x^{ - {3 \over 2}}} + {1 \over 6}{x^{ - {5 \over 6}}}$ B: $ - {1 \over 2}{x^{ - {3 \over 2}}} + {1 \over 6}{x^{ - {5 \over 6}}}$ C: ${1 \over 2}{x^{ - {3 \over 2}}} - {1 \over 6}{x^{ - {5 \over 6}}}$ D: ${1 \over 3}{x^{ - {3 \over 2}}} - {1 \over 6}{x^{ - {5 \over 6}}}$