设函数f(x)在区间[-2,2]上可导,且f′(x)>f(x)>0,则()。 A: f(-2)/f(-1)>1 B: f(0)/f(-1)>e C: f(1)/f(-1)<e<sup>2</sup> D: f(2)/f(-1)<e<sup>2</sup>
设函数f(x)在区间[-2,2]上可导,且f′(x)>f(x)>0,则()。 A: f(-2)/f(-1)>1 B: f(0)/f(-1)>e C: f(1)/f(-1)<e<sup>2</sup> D: f(2)/f(-1)<e<sup>2</sup>
设,[N12,+12]和[N6,+6]是群,f是从[N12,+12]到[N6,+6]的一个同态映射,定义为f(3k)=0,f(3k+1)=2,f(3k+2)=4,k=0,1,2,3。 (1)试求,同态像[f(N12),+6],其中f(N12)=íf(a) | aÎN12ý (2)证[f(N12),+6]是群。 (3)试求, f的同态核Ker(f)。 (4)验证[Ker(f),+12]是[N12,+12]的正规子群。
设,[N12,+12]和[N6,+6]是群,f是从[N12,+12]到[N6,+6]的一个同态映射,定义为f(3k)=0,f(3k+1)=2,f(3k+2)=4,k=0,1,2,3。 (1)试求,同态像[f(N12),+6],其中f(N12)=íf(a) | aÎN12ý (2)证[f(N12),+6]是群。 (3)试求, f的同态核Ker(f)。 (4)验证[Ker(f),+12]是[N12,+12]的正规子群。
函数f(x)=x4-2x2+5在区间[-2,2]上的最大值和最小值分别是( )。 A: 最大值f(2)=13,最小值f(1)=4 B: 最小值f(±2)=13,最大值f(±1)=4 C: 最大值f(±2)=13,最小值f(±1)=4 D: 最小值f(2)=13,最大值f(1)=4
函数f(x)=x4-2x2+5在区间[-2,2]上的最大值和最小值分别是( )。 A: 最大值f(2)=13,最小值f(1)=4 B: 最小值f(±2)=13,最大值f(±1)=4 C: 最大值f(±2)=13,最小值f(±1)=4 D: 最小值f(2)=13,最大值f(1)=4
设$\int_0^\pi {[f(x) + f''(x)]\sin xdx = 5} $,$f(\pi ) = 2$,求$f(0)$=( ) A: 1 B: 2 C: 3 D: 4
设$\int_0^\pi {[f(x) + f''(x)]\sin xdx = 5} $,$f(\pi ) = 2$,求$f(0)$=( ) A: 1 B: 2 C: 3 D: 4
已知已知f(x)是奇函数,且f(2﹣x)=f(x),当x∈[2,3]时,f(x)=log2(x﹣1),
已知已知f(x)是奇函数,且f(2﹣x)=f(x),当x∈[2,3]时,f(x)=log2(x﹣1),
设f(x)=x2+bx+c且f(0)=f(2),则( ) A: f(-2)<c<f(32) B: f(32)<c<f(-2) C: f(32)<f(-2)<c D: c<f(32)<f(-2)
设f(x)=x2+bx+c且f(0)=f(2),则( ) A: f(-2)<c<f(32) B: f(32)<c<f(-2) C: f(32)<f(-2)<c D: c<f(32)<f(-2)
函数f(x)=xsinx,若α、β∈[-π2,π2],且f(α)>f(β),则以下结论正确的是( )
函数f(x)=xsinx,若α、β∈[-π2,π2],且f(α)>f(β),则以下结论正确的是( )
设函数f(x)=a|x|(a>0),且f(2)=4,则( ) A: f(-1)>f(-2) B: f(1)>f(2) C: f(2)<f(-2) D: f(-3)>f(-2)
设函数f(x)=a|x|(a>0),且f(2)=4,则( ) A: f(-1)>f(-2) B: f(1)>f(2) C: f(2)<f(-2) D: f(-3)>f(-2)
f(x)=x2+bx+c,x∈R,有f(2+x)=f(2-x),则( ) A: f(1)<f(2)<f(4) B: f(2)<f(4)<f(1) C: f(4)<f(2)<f(1) D: f(2)<f(1)<f(4) E: f(1)<f(4)<f(2)
f(x)=x2+bx+c,x∈R,有f(2+x)=f(2-x),则( ) A: f(1)<f(2)<f(4) B: f(2)<f(4)<f(1) C: f(4)<f(2)<f(1) D: f(2)<f(1)<f(4) E: f(1)<f(4)<f(2)
当函数f(x)在闭区间[1,2]连续,且满足下列哪个条件时,该函数在开区间(1,2)内至少存在一点y使得f(y)=0. ( ) A: f(1)= f(2) B: f(1)> f(2) C: f(1)< f(2) D: f(1)f(2)<0
当函数f(x)在闭区间[1,2]连续,且满足下列哪个条件时,该函数在开区间(1,2)内至少存在一点y使得f(y)=0. ( ) A: f(1)= f(2) B: f(1)> f(2) C: f(1)< f(2) D: f(1)f(2)<0