• 2021-04-14 问题

    矩阵\[\left[ {\begin{array}{*{20}{c}}{\rm{0}}&{\rm{0}}&{\rm{5}}&{\rm{2}}\\{\rm{0}}&{\rm{0}}&{\rm{2}}&{\rm{1}}\\{\rm{4}}&{\rm{2}}&{\rm{0}}&{\rm{0}}\\{\rm{1}}&{\rm{1}}&{\rm{0}}&{\rm{0}}\end{array}} \right]\]的逆矩阵为 ()

    矩阵\[\left[ {\begin{array}{*{20}{c}}{\rm{0}}&{\rm{0}}&{\rm{5}}&{\rm{2}}\\{\rm{0}}&{\rm{0}}&{\rm{2}}&{\rm{1}}\\{\rm{4}}&{\rm{2}}&{\rm{0}}&{\rm{0}}\\{\rm{1}}&{\rm{1}}&{\rm{0}}&{\rm{0}}\end{array}} \right]\]的逆矩阵为 ()

  • 2022-07-25 问题

    计算\(\oint_L x ds\),其中\(\)为由直线\(y=x\),及抛物线\(y=x^2\)所围成的区域整个边界。 A: \({1 \over {12}}(5\sqrt 2 + 6\sqrt 5 {\rm{ - }}1)\) B: \({1 \over {12}}(6\sqrt 5 + 5\sqrt 2 {\rm{ - }}1)\) C: \({1 \over {12}}(5\sqrt 5 + 6\sqrt 2 {\rm{ - }}1)\) D: \({1 \over {12}}(5\sqrt 5 + 6\sqrt 2 + 1)\)

    计算\(\oint_L x ds\),其中\(\)为由直线\(y=x\),及抛物线\(y=x^2\)所围成的区域整个边界。 A: \({1 \over {12}}(5\sqrt 2 + 6\sqrt 5 {\rm{ - }}1)\) B: \({1 \over {12}}(6\sqrt 5 + 5\sqrt 2 {\rm{ - }}1)\) C: \({1 \over {12}}(5\sqrt 5 + 6\sqrt 2 {\rm{ - }}1)\) D: \({1 \over {12}}(5\sqrt 5 + 6\sqrt 2 + 1)\)

  • 2022-05-30 问题

    设向量组\( {\alpha _1},{\alpha _2},{\alpha _3} \)线性无关,则下列向量组中线性无关的是( ) A: \( {\alpha _1}{\rm{ + }}{\alpha _2},{\alpha _2}{\rm{ + }}{\alpha _3},{\alpha _3} - {\alpha _1} \) B: \( {\alpha _1}{\rm{ + }}{\alpha _2},{\alpha _2}{\rm{ + }}{\alpha _3},{\alpha _1}{\rm{ + 2}}{\alpha _2}{\rm{ + }}{\alpha _3} \) C: \( {\alpha _1}{\rm{ + }}2{\alpha _2},2{\alpha _2}{\rm{ + }}3{\alpha _3},3{\alpha _3}{\rm{ + }}{\alpha _1} \) D: \( {\alpha _1}{\rm{ + }}{\alpha _2}{\rm{ + }}{\alpha _3},2{\alpha _1} - 3{\alpha _2}{\rm{ + }}22{\alpha _3},3{\alpha _1}{\rm{ + 5}}{\alpha _2} - 5{\alpha _3} \)

    设向量组\( {\alpha _1},{\alpha _2},{\alpha _3} \)线性无关,则下列向量组中线性无关的是( ) A: \( {\alpha _1}{\rm{ + }}{\alpha _2},{\alpha _2}{\rm{ + }}{\alpha _3},{\alpha _3} - {\alpha _1} \) B: \( {\alpha _1}{\rm{ + }}{\alpha _2},{\alpha _2}{\rm{ + }}{\alpha _3},{\alpha _1}{\rm{ + 2}}{\alpha _2}{\rm{ + }}{\alpha _3} \) C: \( {\alpha _1}{\rm{ + }}2{\alpha _2},2{\alpha _2}{\rm{ + }}3{\alpha _3},3{\alpha _3}{\rm{ + }}{\alpha _1} \) D: \( {\alpha _1}{\rm{ + }}{\alpha _2}{\rm{ + }}{\alpha _3},2{\alpha _1} - 3{\alpha _2}{\rm{ + }}22{\alpha _3},3{\alpha _1}{\rm{ + 5}}{\alpha _2} - 5{\alpha _3} \)

  • 2022-06-17 问题

    函数\(y = {x^{ - 4}}{\rm{ + }}2{x^3} - 2x\)的导数为( ). A: \(4{x^3} + 6{x^2} - 2\) B: \( - 4{x^{ - 5}} + 6{x^2} - 2\) C: \( - 4{x^{ - 3}} + 6{x^2} - 2\) D: \( - 4{x^3} + 6{x^2} - 2\)

    函数\(y = {x^{ - 4}}{\rm{ + }}2{x^3} - 2x\)的导数为( ). A: \(4{x^3} + 6{x^2} - 2\) B: \( - 4{x^{ - 5}} + 6{x^2} - 2\) C: \( - 4{x^{ - 3}} + 6{x^2} - 2\) D: \( - 4{x^3} + 6{x^2} - 2\)

  • 2022-06-18 问题

    下列各组量子数(n、l、m、m,)中不合理的是 未知类型:{'options': ['\xa03,2,-1, +1/2', '\xa02,0,1, +1/2', '\xa04,2,0,-1/2', '\xa02,1,0, -1/2.'], 'type': 102}

    下列各组量子数(n、l、m、m,)中不合理的是 未知类型:{'options': ['\xa03,2,-1, +1/2', '\xa02,0,1, +1/2', '\xa04,2,0,-1/2', '\xa02,1,0, -1/2.'], 'type': 102}

  • 2022-06-17 问题

    函数\(y = 2{x^{ - 3}}{\rm{ - }}3{x^2}\)的导数为( ). A: \( - 6{x^{ - 4}} - 6x\) B: \( - 6{x^{ - 4}} + 6x\) C: \( - 6{x^{ - 3}} - 6{x^3}\) D: \( - 6{x^{ - 3}} + 6{x^3}\)

    函数\(y = 2{x^{ - 3}}{\rm{ - }}3{x^2}\)的导数为( ). A: \( - 6{x^{ - 4}} - 6x\) B: \( - 6{x^{ - 4}} + 6x\) C: \( - 6{x^{ - 3}} - 6{x^3}\) D: \( - 6{x^{ - 3}} + 6{x^3}\)

  • 2022-06-19 问题

    4、$R_{\rm i}=R_{\rm b}//r_{\rm {be}}\approx 2\rm{k\Omega}$。 A: Yes B: No

    4、$R_{\rm i}=R_{\rm b}//r_{\rm {be}}\approx 2\rm{k\Omega}$。 A: Yes B: No

  • 2022-06-16 问题

    \(\lim \limits_{n \to \infty } { { {\rm{3}}{n^2}{\rm{ + 8}}} \over { { n^2} - n}} = \) .______

    \(\lim \limits_{n \to \infty } { { {\rm{3}}{n^2}{\rm{ + 8}}} \over { { n^2} - n}} = \) .______

  • 2022-06-11 问题

    函数\(y = \sqrt {1{\rm{ - }}x} \)的导数为( ). A: \({\rm{ - }}{1 \over {2\sqrt {1{\rm{ - }}x} }}\) B: \({1 \over {2\sqrt {1{\rm{ - }}x} }}\) C: \({1 \over {\sqrt {1{\rm{ - }}x} }}\) D: \( - {1 \over {\sqrt {1{\rm{ - }}x} }}\)

    函数\(y = \sqrt {1{\rm{ - }}x} \)的导数为( ). A: \({\rm{ - }}{1 \over {2\sqrt {1{\rm{ - }}x} }}\) B: \({1 \over {2\sqrt {1{\rm{ - }}x} }}\) C: \({1 \over {\sqrt {1{\rm{ - }}x} }}\) D: \( - {1 \over {\sqrt {1{\rm{ - }}x} }}\)

  • 2022-06-18 问题

    已知\( y = f({x^2}) \),假设\( f(u) \)二阶可导,则\( y'' \)为( ). A: \( 4{x^2}f''({x^2}){\rm{ + }}2f'({x^2}) \) B: \( {x^2}f''({x^2}){\rm{ + }}2f'({x^2}) \) C: \( 4{x^2}f''({x^2}){\rm{ + }}f'({x^2}) \) D: \( {x^2}f''({x^2}){\rm{ + }}f'({x^2}) \)

    已知\( y = f({x^2}) \),假设\( f(u) \)二阶可导,则\( y'' \)为( ). A: \( 4{x^2}f''({x^2}){\rm{ + }}2f'({x^2}) \) B: \( {x^2}f''({x^2}){\rm{ + }}2f'({x^2}) \) C: \( 4{x^2}f''({x^2}){\rm{ + }}f'({x^2}) \) D: \( {x^2}f''({x^2}){\rm{ + }}f'({x^2}) \)

  • 1 2 3 4 5 6 7 8 9 10