• 2022-06-16 问题

    函数\(z = {x^y}\)的全微分为 A: \(dz = y{x^{y - 1}}dy + {x^y}\ln xdx\) B: \(dz = y{x^{y - 1}}dx + {x^y}dy\) C: \(dz = y{x^{y - 1}}dx + {x^y}\ln xdy\) D: \(dz = y{x^{y - 1}}dy + {x^y}dx\)

    函数\(z = {x^y}\)的全微分为 A: \(dz = y{x^{y - 1}}dy + {x^y}\ln xdx\) B: \(dz = y{x^{y - 1}}dx + {x^y}dy\) C: \(dz = y{x^{y - 1}}dx + {x^y}\ln xdy\) D: \(dz = y{x^{y - 1}}dy + {x^y}dx\)

  • 2021-04-14 问题

    函数z=ln(1 x2 y2)当x=1, y=2时的全微分dz= .

    函数z=ln(1 x2 y2)当x=1, y=2时的全微分dz= .

  • 2022-06-18 问题

    函数z=ln(1 x2 y2)当x=1, y=2时的全微分dz=                              .

    函数z=ln(1 x2 y2)当x=1, y=2时的全微分dz=                              .

  • 2022-07-26 问题

    已知u(1)=1,u"(1)=2,v(1)=1,v"(1)=-1,若函数y=u(x)v(x),则y"(1)等于______。 A: -1 B: 1 C: -2 D: 2

    已知u(1)=1,u"(1)=2,v(1)=1,v"(1)=-1,若函数y=u(x)v(x),则y"(1)等于______。 A: -1 B: 1 C: -2 D: 2

  • 2022-06-18 问题

    函数z=exy当x=1, y=1, Dx=0.15, Dy=0.1时的全微分dz= .

    函数z=exy当x=1, y=1, Dx=0.15, Dy=0.1时的全微分dz= .

  • 2022-10-24 问题

    已知x(n)={1, 2, 3},y(n)={1, 2, 1},则x(n)*y(n)=________。(下划线表示n=0) A: {1, 4, 8, 8, 3} B: {1, 4, 8, 8, 3} C: {1, 4, 8, 8, 3} D: {1, 4, 8, 8, 3}

    已知x(n)={1, 2, 3},y(n)={1, 2, 1},则x(n)*y(n)=________。(下划线表示n=0) A: {1, 4, 8, 8, 3} B: {1, 4, 8, 8, 3} C: {1, 4, 8, 8, 3} D: {1, 4, 8, 8, 3}

  • 2021-04-14 问题

    函数z=xy2+y(lny-1)在x=1,y=1处的全微分dz等于().

    函数z=xy2+y(lny-1)在x=1,y=1处的全微分dz等于().

  • 2022-07-26 问题

    设视点为坐标原点,投影平面为z=d,则点p(x,y,z)的投影为()。 A: (dx,dy,dz,z) B: (x,y,z,dz) C: (dx,dy,dz,1) D: (x,y,z,d)

    设视点为坐标原点,投影平面为z=d,则点p(x,y,z)的投影为()。 A: (dx,dy,dz,z) B: (x,y,z,dz) C: (dx,dy,dz,1) D: (x,y,z,d)

  • 2022-06-10 问题

    已知随机变量X的分布列如下,求X的分布函数。 X 0 1 2 3 p 1/2 1/4 1/8 1/8

    已知随机变量X的分布列如下,求X的分布函数。 X 0 1 2 3 p 1/2 1/4 1/8 1/8

  • 2022-05-30 问题

    将函数\(f(x)=\sin^4 x\)展开成Fourier级数为 ____ . A: \(f(x) = \frac{3}{8}-\frac{1}{2}\cos 2x +\frac{1}{8}cos 4x\) B: \(f(x) = \frac{1}{4}-\frac{1}{2}\cos x +\frac{3}{8}cos 4x\) C: \(f(x) = \frac{1}{4}-\frac{1}{2}\sin 2x -\frac{3}{8}cos 4x\) D: \(f(x) = \frac{3}{8}-\frac{1}{2}\sin x -\frac{1}{8}cos 4x\)

    将函数\(f(x)=\sin^4 x\)展开成Fourier级数为 ____ . A: \(f(x) = \frac{3}{8}-\frac{1}{2}\cos 2x +\frac{1}{8}cos 4x\) B: \(f(x) = \frac{1}{4}-\frac{1}{2}\cos x +\frac{3}{8}cos 4x\) C: \(f(x) = \frac{1}{4}-\frac{1}{2}\sin 2x -\frac{3}{8}cos 4x\) D: \(f(x) = \frac{3}{8}-\frac{1}{2}\sin x -\frac{1}{8}cos 4x\)

  • 1 2 3 4 5 6 7 8 9 10