定义在(0,+∞)上的可导函数f(x)满足xf′(x)-f(x)<0,则对任意a,b∈(0,+∞)且a>b,有() A: af(a)>bf(b) B: bf(a)>af(b) C: af(a)<bf(b) D: bf(a)<af(b)
定义在(0,+∞)上的可导函数f(x)满足xf′(x)-f(x)<0,则对任意a,b∈(0,+∞)且a>b,有() A: af(a)>bf(b) B: bf(a)>af(b) C: af(a)<bf(b) D: bf(a)<af(b)
设函数f(x)在区间(0,+∞)内具有二阶导数,满足f(0)=0,f"(x)<0,又0<a<b,则当a<x<b时恒有( ) A: af(x)>xf(a) B: bf(x)>xf(b) C: xf(x)>bf(b) D: xf(x)>af
设函数f(x)在区间(0,+∞)内具有二阶导数,满足f(0)=0,f"(x)<0,又0<a<b,则当a<x<b时恒有( ) A: af(x)>xf(a) B: bf(x)>xf(b) C: xf(x)>bf(b) D: xf(x)>af
设f(x)在(0,+∞)二阶可导,满足f(0)=0,f(x)在x=0处可导,f"(x)<0(x>0),又设b>a>0,则a<x<b时恒有 A: af(x)>xf(a). B: bf(x)>xf(b). C: xf(x)>bf(b). D: xf(x)>af(a).
设f(x)在(0,+∞)二阶可导,满足f(0)=0,f(x)在x=0处可导,f"(x)<0(x>0),又设b>a>0,则a<x<b时恒有 A: af(x)>xf(a). B: bf(x)>xf(b). C: xf(x)>bf(b). D: xf(x)>af(a).
${\rm var}(X)=\,$ ${\bf E}[X]=\,$ ${\bf P}(X=3)=\,$ ${\bf P}(X=-2)=\,$ ${\bf P}(X=1)=\,$ ${\bf P}(X=0)=\,$______
${\rm var}(X)=\,$ ${\bf E}[X]=\,$ ${\bf P}(X=3)=\,$ ${\bf P}(X=-2)=\,$ ${\bf P}(X=1)=\,$ ${\bf P}(X=0)=\,$______
${\bf P}(X=-2)=\,$ ${\bf P}(X=1)=\,$ ${\bf P}(X=0)=\,$______
${\bf P}(X=-2)=\,$ ${\bf P}(X=1)=\,$ ${\bf P}(X=0)=\,$______
下列表达式中,其值为0的是 A: 15mod9 B: 7/9 C: 79 D: 7mod15
下列表达式中,其值为0的是 A: 15mod9 B: 7/9 C: 79 D: 7mod15
设f(x)的二阶导数存在,且f′(x)=f(1-x),则下列式中何式可成立()? A: Af″(x)+f′(x)=0 B: Bf″(x)-f′(x)=0 C: Cf″(x)+f(x)=0 D: Df″(x)-f(x)=0
设f(x)的二阶导数存在,且f′(x)=f(1-x),则下列式中何式可成立()? A: Af″(x)+f′(x)=0 B: Bf″(x)-f′(x)=0 C: Cf″(x)+f(x)=0 D: Df″(x)-f(x)=0
f(x)在[0,1]上有连续的二阶导数,f(0)=f(1)=0,任意x属于[0,...715af2ac3f81f8.png"]
f(x)在[0,1]上有连续的二阶导数,f(0)=f(1)=0,任意x属于[0,...715af2ac3f81f8.png"]
UTC与UT1应保持在()。 A: ±0 B: 5 C: ±0 D: 9 E: ±0m.5 F: ±0m.9
UTC与UT1应保持在()。 A: ±0 B: 5 C: ±0 D: 9 E: ±0m.5 F: ±0m.9
设$f(x)$在$[a,b]$上连续,且$\int_a^bf(x)dx=0$,则在$[a,b]$上, A: $f(x)\equiv 0$ B: 必存在$\xi$,使得$f(\xi)=0$ C: 必有唯一的$\xi$,使得$f(\xi)=0$ D: 不一定存在$\xi$,使得$f(\xi)=0$
设$f(x)$在$[a,b]$上连续,且$\int_a^bf(x)dx=0$,则在$[a,b]$上, A: $f(x)\equiv 0$ B: 必存在$\xi$,使得$f(\xi)=0$ C: 必有唯一的$\xi$,使得$f(\xi)=0$ D: 不一定存在$\xi$,使得$f(\xi)=0$