求微分方程[img=269x55]17da6536a9fba07.png[/img]的通解; ( ) A: (C15*sin(2*t))/exp(3*t) + (C16*sin(2*t))/exp(3*t) B: (C15*cos(2*t))/exp(3*t) - (C16*sin(2*t))/exp(3*t) C: (C15*cos(2*t))/exp(3*t) + (C16*cos(2*t))/exp(3*t) D: (C15*cos(2*t))/exp(3*t) + (C16*sin(2*t))/exp(3*t)
求微分方程[img=269x55]17da6536a9fba07.png[/img]的通解; ( ) A: (C15*sin(2*t))/exp(3*t) + (C16*sin(2*t))/exp(3*t) B: (C15*cos(2*t))/exp(3*t) - (C16*sin(2*t))/exp(3*t) C: (C15*cos(2*t))/exp(3*t) + (C16*cos(2*t))/exp(3*t) D: (C15*cos(2*t))/exp(3*t) + (C16*sin(2*t))/exp(3*t)
设\(z = {e^{x - 2y}}\),而\(x = \sin t,\;y = {t^3},\)则\( { { dz} \over {dt}} = \)( ) A: \({e^{\sin t - 2{t^3}}}\) B: \({e^{\sin t - 2{t^3}}}\left( {\cos t - 6{t^2}} \right)\) C: \({e^{\sin t - 2{t^3}}}\ {\sin t } \) D: \({e^{\sin t - 2{t^3}}}\,{t^3}\)
设\(z = {e^{x - 2y}}\),而\(x = \sin t,\;y = {t^3},\)则\( { { dz} \over {dt}} = \)( ) A: \({e^{\sin t - 2{t^3}}}\) B: \({e^{\sin t - 2{t^3}}}\left( {\cos t - 6{t^2}} \right)\) C: \({e^{\sin t - 2{t^3}}}\ {\sin t } \) D: \({e^{\sin t - 2{t^3}}}\,{t^3}\)
t=(1,2,3,4,5),下列方法不能获取到元素3的是()。 A: t[-3] B: t[2:3] C: t[2] D: t[2:3][0]
t=(1,2,3,4,5),下列方法不能获取到元素3的是()。 A: t[-3] B: t[2:3] C: t[2] D: t[2:3][0]
设\(z = {e^{x - 2y}}\),而\(x = \sin t\),\(y = {t^3}\),则全导数\( { { dz} \over {dt}} = \) A: \({e^{\sin t - {t^3}}}(\cos t - 6{t^2})\) B: \({e^{\sin t - 2{t^3}}}(\sin t - 6{t^2})\) C: \({e^{\cos t - 2{t^3}}}(\cos t - 6{t^2})\) D: \({e^{\sin t - 2{t^3}}}(\cos t - 6{t^2})\)
设\(z = {e^{x - 2y}}\),而\(x = \sin t\),\(y = {t^3}\),则全导数\( { { dz} \over {dt}} = \) A: \({e^{\sin t - {t^3}}}(\cos t - 6{t^2})\) B: \({e^{\sin t - 2{t^3}}}(\sin t - 6{t^2})\) C: \({e^{\cos t - 2{t^3}}}(\cos t - 6{t^2})\) D: \({e^{\sin t - 2{t^3}}}(\cos t - 6{t^2})\)
设α1=(1,4,3,-1)T,α2=(2,t,-1,-1)T,α3=(-2,3,1,t+1)T,则 A: 对任意的t,α1,α2,α3必线性无关. B: 仅当t=-3时,α1,α2,α3线性无关. C: 若t=0,则α1,α2,α3线性相关. D: 仅t≠0且t≠-3,α1,α2,α3线性无关.
设α1=(1,4,3,-1)T,α2=(2,t,-1,-1)T,α3=(-2,3,1,t+1)T,则 A: 对任意的t,α1,α2,α3必线性无关. B: 仅当t=-3时,α1,α2,α3线性无关. C: 若t=0,则α1,α2,α3线性相关. D: 仅t≠0且t≠-3,α1,α2,α3线性无关.
Fill in the blankFor the expressionf(t)=tε(t)+2ε(t−2)−tε(t−2),f(3)=______ .
Fill in the blankFor the expressionf(t)=tε(t)+2ε(t−2)−tε(t−2),f(3)=______ .
开普勒第三定律的公式是: A: R^2=T^3 B: R^3=T^2 C: R^2/T^3 =K D: R^3/T^2 =K
开普勒第三定律的公式是: A: R^2=T^3 B: R^3=T^2 C: R^2/T^3 =K D: R^3/T^2 =K
一空间曲线由参数方程x=ty=sin(2t) , -3<t<3z=cos(3t*t)表示,绘制这段曲线可以由下列哪组语句完成。? t=-3:0.1:3;x=t;y=sin (2*t);z=cos (3*t.*t);plot3(x, y, z)|t=-3:0.1:3;x=t;y=sin (2*t);z=cos (3*t*t);plot3(x, y, z)|t=-3:0.1:3;y=sin (2*t);z=cos (3*t.*t);plot3 (x, y, z)|t=-3:0.1:3;x=t;y=sin (2*t);z=cos (3*t.*t);plot3(x, y, z, t)
一空间曲线由参数方程x=ty=sin(2t) , -3<t<3z=cos(3t*t)表示,绘制这段曲线可以由下列哪组语句完成。? t=-3:0.1:3;x=t;y=sin (2*t);z=cos (3*t.*t);plot3(x, y, z)|t=-3:0.1:3;x=t;y=sin (2*t);z=cos (3*t*t);plot3(x, y, z)|t=-3:0.1:3;y=sin (2*t);z=cos (3*t.*t);plot3 (x, y, z)|t=-3:0.1:3;x=t;y=sin (2*t);z=cos (3*t.*t);plot3(x, y, z, t)
一空间曲线由参数方程x=t y=sin(2t) , -3<t<3z=cos(3t*t)表示,绘制这段曲线可以由下列哪组语句完成。 A: t=-3:0.1:3;x=t;y=sin(2*t);z=cos(3*t.*t);plot3(x, y, z, t) B: t=-3:0.1:3;x=t;y=sin(2*t);z=cos(3*t*t);plot3(x, y, z) C: t=-3:0.1:3;y=sin(2*t);z=cos(3*t.*t);plot3(x, y, z) D: t=-3:0.1:3;x=t;y=sin(2*t);z=cos(3*t.*t);plot3(x, y, z) E: x=-3:0.1:3;y=sin(2*x);z=cos(3*x.*x);plot3(x, y, z)
一空间曲线由参数方程x=t y=sin(2t) , -3<t<3z=cos(3t*t)表示,绘制这段曲线可以由下列哪组语句完成。 A: t=-3:0.1:3;x=t;y=sin(2*t);z=cos(3*t.*t);plot3(x, y, z, t) B: t=-3:0.1:3;x=t;y=sin(2*t);z=cos(3*t*t);plot3(x, y, z) C: t=-3:0.1:3;y=sin(2*t);z=cos(3*t.*t);plot3(x, y, z) D: t=-3:0.1:3;x=t;y=sin(2*t);z=cos(3*t.*t);plot3(x, y, z) E: x=-3:0.1:3;y=sin(2*x);z=cos(3*x.*x);plot3(x, y, z)
设α1=(1,3,4,-2)T,α2=(2,1,3,t)T,α3=(3,-1,2,0)T线性相关,则t=() A: 1 B: -1 C: 2 D: -2
设α1=(1,3,4,-2)T,α2=(2,1,3,t)T,α3=(3,-1,2,0)T线性相关,则t=() A: 1 B: -1 C: 2 D: -2