background:url(2、png),url(1、jpg),url(3、png),url(4、jpg);},表示哪张图片处在最上层() A: 2、png B: 1、jpg C: 3、png D: 4、jpg
background:url(2、png),url(1、jpg),url(3、png),url(4、jpg);},表示哪张图片处在最上层() A: 2、png B: 1、jpg C: 3、png D: 4、jpg
对任意的n阶矩阵A,B,C,若ABC=E(E是单位矩阵),则下列5式中: (1)ACB=E;(2)BCA=E;(3)BAC=E;(4)CBA=E;(5)CAB=E恒成立的有( )个. A: 1 B: 2 C: 3 D: 4
对任意的n阶矩阵A,B,C,若ABC=E(E是单位矩阵),则下列5式中: (1)ACB=E;(2)BCA=E;(3)BAC=E;(4)CBA=E;(5)CAB=E恒成立的有( )个. A: 1 B: 2 C: 3 D: 4
已知A, B, C都是n阶方阵,如果ABC=E,则下列等式BCA=E,CAB=E,BAC=E,ACB=E,CBA=E一定成立的个数为( ) A: 1 B: 2 C: 3 D: 4
已知A, B, C都是n阶方阵,如果ABC=E,则下列等式BCA=E,CAB=E,BAC=E,ACB=E,CBA=E一定成立的个数为( ) A: 1 B: 2 C: 3 D: 4
设A、B、C均为n阶矩阵,且满足ABC=E,则下列各式中哪些必定成立,理由是什么?(1)BCA=E(2)BAC=E(3)ACB=E(4)CBA=E(5)CAB=E
设A、B、C均为n阶矩阵,且满足ABC=E,则下列各式中哪些必定成立,理由是什么?(1)BCA=E(2)BAC=E(3)ACB=E(4)CBA=E(5)CAB=E
(2011年真题)对任意的,2阶矩阵A,B,C,若ABC=E(E是单位矩阵),则下列5式中:(i)ACB=E(ii)BCA=Efiii)BAC=E(iv)CBA=E(v)CAB=E恒成立的有[ ]个。 A: 1 B: 2 C: 3 D: 4
(2011年真题)对任意的,2阶矩阵A,B,C,若ABC=E(E是单位矩阵),则下列5式中:(i)ACB=E(ii)BCA=Efiii)BAC=E(iv)CBA=E(v)CAB=E恒成立的有[ ]个。 A: 1 B: 2 C: 3 D: 4
估计积分\(\int_2^0 { { e^ { { x^2} - x}}} dx\)的值为( )。(利用估值定理) A: \([ - 2{e^2}, - 2{e^{ - {1 \over 4}}}]\) B: \([ - 2{e^2}, - 2{e^ { { 1 \over 4}}}]\) C: \([2{e^2},2{e^{ - {1 \over 4}}}]\) D: \([2{e^2},2{e^ { { 1 \over 4}}}]\)
估计积分\(\int_2^0 { { e^ { { x^2} - x}}} dx\)的值为( )。(利用估值定理) A: \([ - 2{e^2}, - 2{e^{ - {1 \over 4}}}]\) B: \([ - 2{e^2}, - 2{e^ { { 1 \over 4}}}]\) C: \([2{e^2},2{e^{ - {1 \over 4}}}]\) D: \([2{e^2},2{e^ { { 1 \over 4}}}]\)
利用性质6(估值定理)估计积分\(\int_2^0 { { e^ { { x^2} - x}}} dx\)的值为( )。 A: \([ - 2{e^2}, - 2{e^{ - {1 \over 4}}}]\) B: \([ - 2{e^2}, - 2{e^ { { 1 \over 4}}}]\) C: \([2{e^2},2{e^{ - {1 \over 4}}}]\) D: \([2{e^2},2{e^ { { 1 \over 4}}}]\)
利用性质6(估值定理)估计积分\(\int_2^0 { { e^ { { x^2} - x}}} dx\)的值为( )。 A: \([ - 2{e^2}, - 2{e^{ - {1 \over 4}}}]\) B: \([ - 2{e^2}, - 2{e^ { { 1 \over 4}}}]\) C: \([2{e^2},2{e^{ - {1 \over 4}}}]\) D: \([2{e^2},2{e^ { { 1 \over 4}}}]\)
∫xe^(x^2)dx=( ) A: 1/2(e^(x^2)) B: 1/2(e^(x^2))+C C: -1/2(e^(x^2)) D: -1/2(e^(x^2))十C
∫xe^(x^2)dx=( ) A: 1/2(e^(x^2)) B: 1/2(e^(x^2))+C C: -1/2(e^(x^2)) D: -1/2(e^(x^2))十C
设二维随机变量 (X , Y )服从二维正态分布,则随机变量X + Y与X – Y不相关的充要条件为( ) A: E (X ) = E (Y ) B: E (X 2) – [E (X )]2 = E (Y 2 ) – [E (Y )]2 C: E (X 2 ) = E (Y 2) D: E (X 2) + [E (X )]2 = E (Y 2 ) + [E (Y )]2
设二维随机变量 (X , Y )服从二维正态分布,则随机变量X + Y与X – Y不相关的充要条件为( ) A: E (X ) = E (Y ) B: E (X 2) – [E (X )]2 = E (Y 2 ) – [E (Y )]2 C: E (X 2 ) = E (Y 2) D: E (X 2) + [E (X )]2 = E (Y 2 ) + [E (Y )]2
设X是一随机变量,E(X)=μ,DX=δ2(μ,δ2为常数)则对任意常数C,有( )。 A: E(X-C)2=E(X)2一C2 B: E(X-C)2=E(X-μ)2 C: E(X-C)2<E(X-μ)2 D: E(X-C)2≥E(X-μ)2
设X是一随机变量,E(X)=μ,DX=δ2(μ,δ2为常数)则对任意常数C,有( )。 A: E(X-C)2=E(X)2一C2 B: E(X-C)2=E(X-μ)2 C: E(X-C)2<E(X-μ)2 D: E(X-C)2≥E(X-μ)2