关于Rb蛋白与转录因子E-2F的关系的叙述,正确的是: A: 低(或非)磷酸化Rb蛋白与E-2F结合并使之活化 B: 低(或非)磷酸化Rb蛋白与E-2F解离并使之活化 C: 低(或非)磷酸化Rb蛋白与E-2F解离并使之失活 D: 磷酸化Rb蛋白与E-2F解离并使之活化
关于Rb蛋白与转录因子E-2F的关系的叙述,正确的是: A: 低(或非)磷酸化Rb蛋白与E-2F结合并使之活化 B: 低(或非)磷酸化Rb蛋白与E-2F解离并使之活化 C: 低(或非)磷酸化Rb蛋白与E-2F解离并使之失活 D: 磷酸化Rb蛋白与E-2F解离并使之活化
多面体的欧拉公式是: A: V–F + E = 2 B: V–F–E = 2 C: V + F–E = 2 D: V + F–E = 1
多面体的欧拉公式是: A: V–F + E = 2 B: V–F–E = 2 C: V + F–E = 2 D: V + F–E = 1
设函数f(x)在区间[-2,2]上可导,且f′(x)>f(x)>0,则()。 A: f(-2)/f(-1)>1 B: f(0)/f(-1)>e C: f(1)/f(-1)<e<sup>2</sup> D: f(2)/f(-1)<e<sup>2</sup>
设函数f(x)在区间[-2,2]上可导,且f′(x)>f(x)>0,则()。 A: f(-2)/f(-1)>1 B: f(0)/f(-1)>e C: f(1)/f(-1)<e<sup>2</sup> D: f(2)/f(-1)<e<sup>2</sup>
f(x)=xln2x在x0处可导,f'(x0)=2, 则f(x0)=( ) A: 1 B: e/2 C: 2/e D: e^2
f(x)=xln2x在x0处可导,f'(x0)=2, 则f(x0)=( ) A: 1 B: e/2 C: 2/e D: e^2
设有符合函数y=f[φ2(x)ψ(ex)],其中函数f,φ,ψ都可微分,则dy=()。 A: f′·(2φφ′ψ+φψ′e) B: f′·(2φφ′ψ+φψ′e)dx C: f′·(2φψ+φψ′)dx D: f′·(2φψ+φψ′)
设有符合函数y=f[φ2(x)ψ(ex)],其中函数f,φ,ψ都可微分,则dy=()。 A: f′·(2φφ′ψ+φψ′e) B: f′·(2φφ′ψ+φψ′e)dx C: f′·(2φψ+φψ′)dx D: f′·(2φψ+φψ′)
f(x)=x2+bx+c,x∈R,有f(2+x)=f(2-x),则( ) A: f(1)<f(2)<f(4) B: f(2)<f(4)<f(1) C: f(4)<f(2)<f(1) D: f(2)<f(1)<f(4) E: f(1)<f(4)<f(2)
f(x)=x2+bx+c,x∈R,有f(2+x)=f(2-x),则( ) A: f(1)<f(2)<f(4) B: f(2)<f(4)<f(1) C: f(4)<f(2)<f(1) D: f(2)<f(1)<f(4) E: f(1)<f(4)<f(2)
【多选题】若f 1 (t) = ɛ (-t) , f 2 (t) = e t ,则f 1 (t)* f 2 (t) = A. f 1 ꞌ (t)* f 2 (–1) (t) B. f 1 (–1) (t)* f 2 ꞌ (t) C. f 1 (t-3)* f 2 (t+3) D. f 1 (–3) (t)* f 2 ꞌꞌꞌ (t)
【多选题】若f 1 (t) = ɛ (-t) , f 2 (t) = e t ,则f 1 (t)* f 2 (t) = A. f 1 ꞌ (t)* f 2 (–1) (t) B. f 1 (–1) (t)* f 2 ꞌ (t) C. f 1 (t-3)* f 2 (t+3) D. f 1 (–3) (t)* f 2 ꞌꞌꞌ (t)
【单选题】已知f(t)的傅里叶变换为F(w)利用傅里叶变换的性质确定f(1-t)的傅里叶变换() A. F(w)e^-jw B. F(w/2)e^-jw C. 1/2F(w)e^-jw D. 1/2 F(w)e^jw/2
【单选题】已知f(t)的傅里叶变换为F(w)利用傅里叶变换的性质确定f(1-t)的傅里叶变换() A. F(w)e^-jw B. F(w/2)e^-jw C. 1/2F(w)e^-jw D. 1/2 F(w)e^jw/2
f(t)对应的傅里叶变换F(jω),则F(t)对应的傅里叶变换是( )。 A: f(ω) B: 2πf(ω) C: 2πf(-ω) D: f(-ω) E:
f(t)对应的傅里叶变换F(jω),则F(t)对应的傅里叶变换是( )。 A: f(ω) B: 2πf(ω) C: 2πf(-ω) D: f(-ω) E:
若连续函数\(f\left( x \right)\)满足关系式\(f\left( x \right) = \int_0^{2x} {f\left( { { t \over 2}} \right)} \,dt + \ln 2\),则\(f\left( x \right)\)等于( )。 A: \({e^{2x}}\ln 2\) B: \({e^x}\ln 2\) C: \({e^x} + \ln 2\) D: \({e^{2x}} + \ln 2\)
若连续函数\(f\left( x \right)\)满足关系式\(f\left( x \right) = \int_0^{2x} {f\left( { { t \over 2}} \right)} \,dt + \ln 2\),则\(f\left( x \right)\)等于( )。 A: \({e^{2x}}\ln 2\) B: \({e^x}\ln 2\) C: \({e^x} + \ln 2\) D: \({e^{2x}} + \ln 2\)