设\( \alpha {\rm{ = }}\left( {\matrix{ 1 \cr 0 \cr 1 \cr } } \right)\;A = \alpha {\alpha ^{T,}} \) ,则\( \left| {I - {A^n}} \right| = \) ( ) A: \( 1 + {2^n} \) B: \( 1 - {2^n} \) C: \( 1 + {3^n} \) D: \( 1 - {3^n} \)
设\( \alpha {\rm{ = }}\left( {\matrix{ 1 \cr 0 \cr 1 \cr } } \right)\;A = \alpha {\alpha ^{T,}} \) ,则\( \left| {I - {A^n}} \right| = \) ( ) A: \( 1 + {2^n} \) B: \( 1 - {2^n} \) C: \( 1 + {3^n} \) D: \( 1 - {3^n} \)
向量组\(\left( {\matrix{ { - 1} \cr 3 \cr 1 \cr } } \right),\left( {\matrix{ 2 \cr 1 \cr 0 \cr } } \right),\left( {\matrix{ 1 \cr 4 \cr 1 \cr } } \right) \)线性相关.
向量组\(\left( {\matrix{ { - 1} \cr 3 \cr 1 \cr } } \right),\left( {\matrix{ 2 \cr 1 \cr 0 \cr } } \right),\left( {\matrix{ 1 \cr 4 \cr 1 \cr } } \right) \)线性相关.
下列矩阵中,不是初等矩阵的是( ) A: \( \left( {\matrix{ 1 & 0 & 0 \cr 0 & 0 & 1 \cr 0 & 1 & 0 \cr } } \right) \) B: \( \left( {\matrix{ 1 & 0 & 0 \cr 0 & { - 3} & 0 \cr 0 & 0 & 1 \cr } } \right) \) C: \( \left( {\matrix{ 1 & 3 & 0 \cr 0 & 0 & 1 \cr 0 & 1 & 0 \cr } } \right) \) D: \( \left( {\matrix{ 1 & 0 & 3 \cr 0 & 1 & 0 \cr 0 & 0 & 1 \cr } } \right) \)
下列矩阵中,不是初等矩阵的是( ) A: \( \left( {\matrix{ 1 & 0 & 0 \cr 0 & 0 & 1 \cr 0 & 1 & 0 \cr } } \right) \) B: \( \left( {\matrix{ 1 & 0 & 0 \cr 0 & { - 3} & 0 \cr 0 & 0 & 1 \cr } } \right) \) C: \( \left( {\matrix{ 1 & 3 & 0 \cr 0 & 0 & 1 \cr 0 & 1 & 0 \cr } } \right) \) D: \( \left( {\matrix{ 1 & 0 & 3 \cr 0 & 1 & 0 \cr 0 & 0 & 1 \cr } } \right) \)
两根细长杆,直径、约束均相同,但材料不同,且E1=2E2,则两杆临界应力的关系为()。 A: (σcr)1=(σcr)2 B: (σcr)1=2(σcr)2 C: (σcr)1=(σcr)2/2 D: (σcr)1=3(σcr)2
两根细长杆,直径、约束均相同,但材料不同,且E1=2E2,则两杆临界应力的关系为()。 A: (σcr)1=(σcr)2 B: (σcr)1=2(σcr)2 C: (σcr)1=(σcr)2/2 D: (σcr)1=3(σcr)2
A.(σcr)1=(σcr)2 A: (σcr)1=2(σcr)2 B: (σcr)1=(σcr)2/2 C: (σcr)1=3(σcr)2 D: 两根细长杆,直径、约束均相同,但材料不同,且E1=2E2,则两杆临界应力的关系为()。
A.(σcr)1=(σcr)2 A: (σcr)1=2(σcr)2 B: (σcr)1=(σcr)2/2 C: (σcr)1=3(σcr)2 D: 两根细长杆,直径、约束均相同,但材料不同,且E1=2E2,则两杆临界应力的关系为()。
设3阶实对称矩阵\( A \)的秩为2,且\( {A^2} - A = O \) ,则\( A \)相似于( ) A: \( \left( {\matrix{ 1 & {} & {} \cr {} & { - 1} & {} \cr {} & {} & 0 \cr } } \right) \) B: \( \left( {\matrix{ 1 & {} & {} \cr {} & 1 & {} \cr {} & {} & 0 \cr } } \right) \) C: \( \left( {\matrix{ { - 1} & {} & {} \cr {} & { - 1} & {} \cr {} & {} & 0 \cr } } \right) \) D: \( \left( {\matrix{ 1 & 1 & {} \cr {} & 1 & {} \cr {} & {} & 0 \cr } } \right) \)
设3阶实对称矩阵\( A \)的秩为2,且\( {A^2} - A = O \) ,则\( A \)相似于( ) A: \( \left( {\matrix{ 1 & {} & {} \cr {} & { - 1} & {} \cr {} & {} & 0 \cr } } \right) \) B: \( \left( {\matrix{ 1 & {} & {} \cr {} & 1 & {} \cr {} & {} & 0 \cr } } \right) \) C: \( \left( {\matrix{ { - 1} & {} & {} \cr {} & { - 1} & {} \cr {} & {} & 0 \cr } } \right) \) D: \( \left( {\matrix{ 1 & 1 & {} \cr {} & 1 & {} \cr {} & {} & 0 \cr } } \right) \)
曲线$\left\{ \matrix{ {x^2} + {y^2} + {z^2} = 9 \cr y = x \cr} \right.$的参数方程为( ). A: $$\left\{ \matrix{ x = \sqrt 3 \cos t \cr y = \sqrt 3 \cos t \cr z = \sqrt 3 \sin t \cr} \right.(0 \le t \le 2\pi )$$ B: $$\left\{ \matrix{ x = {3 \over {\sqrt 2 }}\cos t\cr y = {3 \over {\sqrt 2 }}\cos t \cr z = 3\sin t \cr} \right.(0 \le t \le 2\pi )$$ C: $$\left\{ \matrix{ x = \cos t\cr y = \cos t\cr z = \sin t \cr} \right.(0 \le t \le 2\pi )$$ D: $$\left\{ \matrix{ x = {{\sqrt 3 } \over 3}\cos t\cr y = {{\sqrt 3 } \over 3}\cos t \cr z = {{\sqrt 3 } \over 3}\sin t\cr} \right.(0 \le t \le 2\pi )$$
曲线$\left\{ \matrix{ {x^2} + {y^2} + {z^2} = 9 \cr y = x \cr} \right.$的参数方程为( ). A: $$\left\{ \matrix{ x = \sqrt 3 \cos t \cr y = \sqrt 3 \cos t \cr z = \sqrt 3 \sin t \cr} \right.(0 \le t \le 2\pi )$$ B: $$\left\{ \matrix{ x = {3 \over {\sqrt 2 }}\cos t\cr y = {3 \over {\sqrt 2 }}\cos t \cr z = 3\sin t \cr} \right.(0 \le t \le 2\pi )$$ C: $$\left\{ \matrix{ x = \cos t\cr y = \cos t\cr z = \sin t \cr} \right.(0 \le t \le 2\pi )$$ D: $$\left\{ \matrix{ x = {{\sqrt 3 } \over 3}\cos t\cr y = {{\sqrt 3 } \over 3}\cos t \cr z = {{\sqrt 3 } \over 3}\sin t\cr} \right.(0 \le t \le 2\pi )$$
两根细长杆,直径、约束均相同,但材料不同,且E1=2E2则两杆临界应力的关系为()。 A: (σcr)1=(σcr)2 B: (σcr)1=2(σcr)2 C: D: (σcr)1=3(σcr)2
两根细长杆,直径、约束均相同,但材料不同,且E1=2E2则两杆临界应力的关系为()。 A: (σcr)1=(σcr)2 B: (σcr)1=2(σcr)2 C: D: (σcr)1=3(σcr)2
设α1=(1,1,2,2)T,α2=(t,t+2,2t+2,2t+4)T,α3=(1,a+1,2a+3,2a+2)T,α4=(-2,-3,2t-9,t-7)T,若()成立,α1,α2,α3,α4线性无关。 A: t=1,且a=-1 B: t=1,或a=-1 C: t≠1,且a≠-1 D: t≠1,或a=-1
设α1=(1,1,2,2)T,α2=(t,t+2,2t+2,2t+4)T,α3=(1,a+1,2a+3,2a+2)T,α4=(-2,-3,2t-9,t-7)T,若()成立,α1,α2,α3,α4线性无关。 A: t=1,且a=-1 B: t=1,或a=-1 C: t≠1,且a≠-1 D: t≠1,或a=-1
设α1=(1,4,3,-1)T,α2=(2,t,-1,-1)T,α3=(-2,3,1,t+1)T,则 A: 对任意的t,α1,α2,α3必线性无关. B: 仅当t=-3时,α1,α2,α3线性无关. C: 若t=0,则α1,α2,α3线性相关. D: 仅t≠0且t≠-3,α1,α2,α3线性无关.
设α1=(1,4,3,-1)T,α2=(2,t,-1,-1)T,α3=(-2,3,1,t+1)T,则 A: 对任意的t,α1,α2,α3必线性无关. B: 仅当t=-3时,α1,α2,α3线性无关. C: 若t=0,则α1,α2,α3线性相关. D: 仅t≠0且t≠-3,α1,α2,α3线性无关.