设`\n`阶方阵`\A`满足`\|A| = 2`,则`\|A^TA| = ,|A^{ - 1}| = ,| A^ ** | = ,| (A^ ** )^ ** | = ,|(A^ ** )^{ - 1} + A| = ,| A^{ - 1}(A^ ** + A^{ - 1})A| = `分别等于( ) A: \[4,\frac{1}{2},{2^{n - 1}},{2^{{{(n - 1)}^2}}},2{(\frac{3}{2})^n},\frac{{{3^n}}}{2}\] B: \[2,\frac{1}{2},{2^{n - 1}},{2^{{{(n + 1)}^2}}},2{(\frac{3}{2})^n},\frac{{{3^n}}}{2}\] C: \[4,\frac{1}{2},{2^{n + 1}},{2^{{{(n - 1)}^2}}},2{(\frac{3}{2})^{n - 1}},\frac{{{3^n}}}{2}\] D: \[2,\frac{1}{2},{2^{n - 1}},{2^{{{(n - 1)}^2}}},2{(\frac{3}{2})^{n - 1}},\frac{{{3^n}}}{2}\]
设`\n`阶方阵`\A`满足`\|A| = 2`,则`\|A^TA| = ,|A^{ - 1}| = ,| A^ ** | = ,| (A^ ** )^ ** | = ,|(A^ ** )^{ - 1} + A| = ,| A^{ - 1}(A^ ** + A^{ - 1})A| = `分别等于( ) A: \[4,\frac{1}{2},{2^{n - 1}},{2^{{{(n - 1)}^2}}},2{(\frac{3}{2})^n},\frac{{{3^n}}}{2}\] B: \[2,\frac{1}{2},{2^{n - 1}},{2^{{{(n + 1)}^2}}},2{(\frac{3}{2})^n},\frac{{{3^n}}}{2}\] C: \[4,\frac{1}{2},{2^{n + 1}},{2^{{{(n - 1)}^2}}},2{(\frac{3}{2})^{n - 1}},\frac{{{3^n}}}{2}\] D: \[2,\frac{1}{2},{2^{n - 1}},{2^{{{(n - 1)}^2}}},2{(\frac{3}{2})^{n - 1}},\frac{{{3^n}}}{2}\]
【单选题】给出4n^2、logn、3^n、20n、 2、n^2/3、 n!的时间复杂度排序(升序)。 A. 4n^2、logn、3^n、20n、 2、n^2/3, n! B. 2, logn,n^2/3, 20n, 4n^2, 3^n, n! C. n! 、 3^n、 4n^2、logn、20n、 2、n^2/3 D. 2 、 n^2/3 、4n^2、logn、3^n、20n、 n!
【单选题】给出4n^2、logn、3^n、20n、 2、n^2/3、 n!的时间复杂度排序(升序)。 A. 4n^2、logn、3^n、20n、 2、n^2/3, n! B. 2, logn,n^2/3, 20n, 4n^2, 3^n, n! C. n! 、 3^n、 4n^2、logn、20n、 2、n^2/3 D. 2 、 n^2/3 、4n^2、logn、3^n、20n、 n!
下列选项中不能用来判断一个整数n是偶数的是() A: n%2==0 B: n%2!=1 C: n/2==n//2 D: n/2!=n//2
下列选项中不能用来判断一个整数n是偶数的是() A: n%2==0 B: n%2!=1 C: n/2==n//2 D: n/2!=n//2
3. Suppose that the relative error of is ,then the relative error of is_________. A: n*2% B: 2% C: n/2% D: (2%)^n
3. Suppose that the relative error of is ,then the relative error of is_________. A: n*2% B: 2% C: n/2% D: (2%)^n
X1,X2,,Xn是来自总体N(μ,σ2)的样本,样本均值服从( )分布。 A: N(nμ,nσ2) B: N(μ,σ2) C: N(μ,σ2/n) D: N(0,1)
X1,X2,,Xn是来自总体N(μ,σ2)的样本,样本均值服从( )分布。 A: N(nμ,nσ2) B: N(μ,σ2) C: N(μ,σ2/n) D: N(0,1)
1.下列数列中,收敛但极限不为$1$的是 A: ${{(2+\frac{1}{n})}^{\frac{1}{n}}}$ B: ${{n}^{\frac{1}{n}}}$ C: $\frac{1}{{{n}^{2}}+1}+\frac{2}{{{n}^{2}}+2}+\cdots +\frac{n}{{{n}^{2}}+n}$ D: $\frac{{{(n!)}^{2}}}{{{n}^{n}}}$
1.下列数列中,收敛但极限不为$1$的是 A: ${{(2+\frac{1}{n})}^{\frac{1}{n}}}$ B: ${{n}^{\frac{1}{n}}}$ C: $\frac{1}{{{n}^{2}}+1}+\frac{2}{{{n}^{2}}+2}+\cdots +\frac{n}{{{n}^{2}}+n}$ D: $\frac{{{(n!)}^{2}}}{{{n}^{n}}}$
设n为整型,则不能表示能被2整除的表达式是( ) A: !(n%2) B: n%2==0 C: n%2!=1 D: n/2==0
设n为整型,则不能表示能被2整除的表达式是( ) A: !(n%2) B: n%2==0 C: n%2!=1 D: n/2==0
设A是n阶矩阵,A=½E,则 |A|=( )。 A: (1/2)^n B: 2^n C: 1/2 D: 2
设A是n阶矩阵,A=½E,则 |A|=( )。 A: (1/2)^n B: 2^n C: 1/2 D: 2
设\(A\)为\(n\)阶方阵,\(\left| A \right| = 2 \),则\(\left| {\left| A \right|{A^T}} \right|=\) A: \({2^{n + 1}} \) B: \({2^{n }}\) C: \({2^{n - 1}}\) D: \(2\)
设\(A\)为\(n\)阶方阵,\(\left| A \right| = 2 \),则\(\left| {\left| A \right|{A^T}} \right|=\) A: \({2^{n + 1}} \) B: \({2^{n }}\) C: \({2^{n - 1}}\) D: \(2\)
设有向量组α1,α2,....,αn和向量β,则错误的是 A: 若α1,α2,....,αn线性相关,则α1,α2,....,αn,β一定线性相关 B: 若α1,α2,....,αn线性相关,则α1,α2,....,αn,β不一定线性相关 C: 若α1,α2,....,αn线性无关,则α1,α2,....,αn,β不一定线性无关 D: 若α1,α2,....,αn线性无关,则α1,α2,....,αn,β不一定线性相关
设有向量组α1,α2,....,αn和向量β,则错误的是 A: 若α1,α2,....,αn线性相关,则α1,α2,....,αn,β一定线性相关 B: 若α1,α2,....,αn线性相关,则α1,α2,....,αn,β不一定线性相关 C: 若α1,α2,....,αn线性无关,则α1,α2,....,αn,β不一定线性无关 D: 若α1,α2,....,αn线性无关,则α1,α2,....,αn,β不一定线性相关