• 2022-05-29
    在由[tex=3.286x1.286]8HfyhpDWcP8x+LFssfSnaw==[/tex]个结点构成的 [tex=0.929x1.214]hA5qG8p0PvlVACh+H0suBg==[/tex]个正方形网格所组成的平面图上,验证 [tex=2.571x1.0]t/iuEZbRxtahqQacSvdZZg==[/tex] 公式的正确性。
  • 证:如此的平面图,结点数[tex=5.214x1.286]+3u/jsLnyFIj3vTKa5BkXwz/me9w/X0DwwzOLmy83jE=[/tex]边数  [tex=12.643x1.357]uiYPqvmZ6fZt54kcphPXRq93JRGvJ5gmIevJFG96LTk=[/tex][tex=3.929x1.357]u+7LUcbSzqVhZrAvnCLIkQ==[/tex]面数 [tex=3.429x1.429]Muf9jMAyiYaSIVd8tDoRYg==[/tex](外部为[tex=1.786x1.143]urfkc8Sgr175b8aKIxEDyA==[/tex] 条边围成的面) 于是  [tex=21.571x4.429]hLgMFocgKA07QE4xYfjsliwZ6YssQjQ32Xnx0etpj2eyHcWa+ZO8QvQY5Kmx8mQGZtwg/xZAeEl+wOuUi9eMsUGPNAo8nADI0oS78073fr9o8UYzU6bpz4pQSOORtPrY4qmabg8dW7s5rBaiseponn8bWgiUV3RAyIS6d7C/l53lcsspawwY8+wlPveyDWo/TRrTk/L8CeW/4YfI9jYRJf4c759qD89lbgTVCbdWTVWrQ6om2ocLHJ5Cna3o8ldj[/tex]故此 [tex=2.571x1.0]t/iuEZbRxtahqQacSvdZZg==[/tex]公式对此类图正确。

    内容

    • 0

      6个顶点11条边的所有非同构的连通的简单非平面图有[tex=2.143x2.429]iP+B62/T05A6ZTM0eeaWiQ==[/tex]个,其中有[tex=2.143x2.429]ndZSw3zT0QTOVLVdoUto1Q==[/tex]个含子图[tex=1.786x1.286]J+vVZa2YaMpc6mJBbqVvWw==[/tex],有[tex=2.143x2.429]lmhx48evnQMhi03NovPXig==[/tex]个含与[tex=1.214x1.214]kFXZ1uR8GjycbJx+Ts2kyQ==[/tex]同胚的子图。供选择的答案[tex=3.071x1.214]3KinXFh3SXhZ7nIe1y9KEV6aadxhhJWeEy6Dij1iObdMUZkY6ZA5J2dVVjPSuhEf[/tex]:(1) 1 ;(2) 2 ;(3) 3 ; (4) 4 ;(5) 5 ;(6) 6 ; (7) 7 ; (8) 8 。

    • 1

      有容量分别为[tex=3.286x1.286]pCZ+fPe3X5XtlIcXCf6RGw==[/tex]和[tex=3.286x1.286]JjWMjbwalVPPThZBywJsLQ==[/tex]的独立随机样本得到下述观测结果, (X、 Y为观测值, f为频数)X   12.3    12.5    12.8   13.0   13.5   Y   12.2  12.3   13.0f      1          2        4         2       1      f      6      8        2现已知变量X、Y的总体均呈正态分布。请问在0.05的显著性水平下,可否认为这两个总体属同一分布?[tex=24.786x1.286]OVWwFMgiPzBDnRSqBYypUv4puOxaqZVbzeGoYhEt/ZwiQxP0kGgAAWuaJInyBhH09xLkSWqB6n3qd1WXaKpfvwUNfmmVSMJTzi4wz4IT6q4=[/tex][tex=8.429x1.286]AcUD6cTXhAghaQMem3GRbFMfFVpZHcyA3tP0z+S7RAk=[/tex] [tex=13.357x1.357]ZPe8nXNlBeMmW2cEA+D6DaqP/loFbcVH2QukDH1SMofLM6E74nDyl0WrH8imm/Ai[/tex]

    • 2

      由[tex=0.5x1.0]8C7DKsr6nhrfCdsmGxO88g==[/tex]个命题变元[tex=0.571x1.0]FGGpnaR8m8C48rN8O0c7aw==[/tex]和[tex=0.5x1.0]jedlXyMYwmfVwxRj2j9sSw==[/tex]组成的不等值的命题公式的个数有(    )。 A: 2 B: 4 C: 8 D: 16

    • 3

      设抛物线[tex=7.5x1.429]PuOOiuXliw3SbXOlC3PxEg==[/tex]与x轴有两个交点x=a,x=b(a<b).函数f在&#91;a,b&#93;上二阶可导,f(a)=f(b)=0,并且曲线y=f(x)与[tex=7.5x1.429]PuOOiuXliw3SbXOlC3PxEg==[/tex]在(a,b)内有一个交点.证明:存在[tex=3.286x1.357]EV4pc+LBkNBOhd4NZUA5NQ==[/tex],使得[tex=4.357x1.429]/FYTUVhgTPYa3RqQR+bSSXpHSralD3pTYi2H35Z8qsw=[/tex].

    • 4

      设I(x):x是整数;N(x):x是负数;S(x,y):y是x的平方命题“任何整数的平方非负”可表示为谓词公式 未知类型:{'options': ['[tex=11.929x1.357]Ab8zVcSaawMRd84sw7i/JAhyPtafOzIiYwAO+plGfU5YAO/QV3YAB0GXAXRhZ7CliwQzjDdB7FbEZsDooWfNcKY5XHTFYR6Idofr8S7Wax4=[/tex]', '[tex=11.214x1.357]Vs8Vcw/zPN7kvQW5F7NycC9PlK+v4vkWJ4hyjFXkOftd5yicp99G5Tnp+KzILEwlHDVGwqo5md6rK5TfGKT6pg==[/tex]', '[tex=11.214x1.357]Ab8zVcSaawMRd84sw7i/JPLc5lkPb0vCB3HAoQdCvLgUiouuuSbyQIQ62rJKADX6FQeTBBqnQa6q/6Qzw2KRYw==[/tex]', '[tex=10.929x1.357]mX5PRaABESRf9QDOAojNZuqee9gfCLdnz+se+AlyZp5SHDOcNaBoGKl0MgSjkAb89Uw7a1sL8h1OT0gFb59yAg==[/tex]'], 'type': 102}