设A为n阶方阵,满足A²=E,试证:R(E+A)+R(E-A)=n
举一反三
- 设A为n阶方阵,且满足A2=A,则( ).(A)r(A)=n (B)r(A)=0(C)r(A)+r(E-A)=n (D)r(A)=r(E-A)
- n阶方阵A满足A^2=O,E是n阶单位阵,则A.|E-A|≠0,但|E+A|=0B|E-A
- 设A为n阶非零矩阵,E为n阶单位矩阵,若[tex=2.857x1.214]i42F0iHtinJxyn/rXt5OZtfkqcVYW9NevvfEchuwEc4=[/tex]则()(A)E-A不可逆,E+A不可逆(B)E-A不可逆,E+A可逆(C)E-A可逆,E+A可逆(D)E-A可逆,E+A不可逆
- 设A为n阶方阵,E是n阶单位矩阵,A2=E,则一定有 A: r(A)<n B: r(A)=n C: r(A+E)=0 D: r(A-E)=0
- 设A为n阶矩阵,满足[tex=2.714x1.214]4L/EWHoLeKVwR1IkyZAsSQ==[/tex],试证:r(A)+r(A-E)=n.