• 2022-05-29
    找出三次对称群[tex=1.0x1.214]G62gpl4RWSU7OYDj4PxCmA==[/tex]的一切子群。(注意要求证明你所找出的子群已经穷尽了 [tex=1.0x1.214]G62gpl4RWSU7OYDj4PxCmA==[/tex]的一切子群。
  • 解 [tex=26.929x2.786]1nvd38z/cgkkKYpklmo2Tc7pHn38rDVupSknsc5iGgW6QsHWh69Mv7mca4tn0wCRuhDXoE1g23pgO/AueY4FZUthdgnLpA/V53OCELPz8B8qlYgGV5Uvd9JrBXvBeKPOyb7quPiap8/furOOblP12v0FXOou/IeK6Pan/KYo60oOuFtlGHRA5kMLQo0JlZBoDxQYJED9cBtv8FAXyOXeD7uicTzVZsOFbhpOwHX9gZEu+LdtptcRAQuJ+5zK/rkcK72E2DCJ+rLkRWd3fef+rnxDMHwCu5su185SWDCezWe3fd03HOEbmn1cSWQAzXxBoNjTLjvuV/0qxtfOu65NYw==[/tex][tex=25.5x2.786]TOK5a2zbqX3s0g/2gMYj+bvH1L5vOxEKWtX1C1oNxsscIUXQIgkhay8gSODcqbXuJD/xELX3/f//NzFP5ylKOOCHi4i+fsMIxJBDBP9HD9EmeDuWg8FCQY1FHggZYE91nU2KnEKftTM1ACI2VC9UjRVmeeO/gbjbsNG2r6PEPIITm0sqn839YtLYIVeoV0mPD9L44myjMmVJ8+1KvBAZdmo7cwZe0i3qOh2bujyA7yo1TOFId+X02A2y4GCASW/2C+fhPw8iPCTXvvtJHzE+xZmq8crD0BeTpMRAHp46R7CBk9uvP0n5GJGD8enIeaUfFRQEpDP7w8AD7Ktfsdxnnw==[/tex]。为便于叙述,下面引进群中元素的阶的概念。群中元素[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]的阶是指适合 [tex=2.286x1.0]qF9xj8o2mMMaUsMgaHkC6g==[/tex]( 单位元 )的最小正整数[tex=0.643x0.786]h6IfGOxBlahC8le5jX4WiA==[/tex]。从定义不难看出,[tex=2.5x1.143]WVLtR3VPdSlf6qWJAi7er9WdTCDoM59RqvyklV6jSsU=[/tex]时,[tex=0.5x0.786]WKYr2kz69xrVCyPvbyVG1w==[/tex],[tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex],[tex=1.286x0.786]lRSLJav0cvc1uYdx/9plcw==[/tex],[tex=1.929x1.214]8zmgPbemfkRq48xw/z9enQ==[/tex]互不相等。否则,存在整数[tex=0.571x1.0]CQkpoDeAAI+5FKIfe1wVCA==[/tex],[tex=0.357x1.0]5vVfAZliYwqMw8JaLE+iEA==[/tex],[tex=7.214x1.143]GqVU0tOG29aG5I/eO/efBm7xl4tT4+ObGm1GW3WXyjc=[/tex],使[tex=2.5x1.214]gPq4oH8nANlZpkC+8Pj00g==[/tex],于是 [tex=13.071x1.786]cFVljmEvKfHdaQPGG2Czras/jkbA6/DQE8fsdPvZilkODsx90YUyRh8Hqy9JQd1MQT0tZMd5cqS+de0ln0+0OjzTCwS9ld8zJvXdxInAv0IwQTDtAfjSzpzMz+TnTfB4[/tex]。显然 [tex=5.429x1.143]1TqBjmJpRPUWnuN/PBCUJw==[/tex],与[tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex]的阶是[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]矛盾。由此知循环群[tex=1.357x1.357]UMu6yZaqu6lAbCVsfR7R0Gd4uDjR1gRFcqTenXrRKBI=[/tex]为[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶子群。[tex=1.0x1.214]vIC1ui1s5j6wm/e+z3rn5A==[/tex]中[tex=0.5x0.786]xdTs2QHMXTpKzI7ZnwCRMQ==[/tex]为一阶元,[tex=0.929x1.0]GIJA+ElcF8sfFVDzHxfsvg==[/tex],[tex=0.929x1.0]gak5irftAp3YubasKVoCqw==[/tex],[tex=0.929x1.0]G+/HNITXSFKSvAAtLR9AqA==[/tex]为二阶元,[tex=0.929x1.0]vjXVNjFU7EbPD0ok8JKRfA==[/tex],[tex=0.929x1.0]c1LK6GWhoinqYyFdR5Ltvw==[/tex]为三阶元,因而有子群[tex=5.429x1.357]1DveO5sagClwV7/15tlBrUj9NrGPxcj2v9pCwRPbGxVhp2JuC9X1EXQhlFK94Uz7[/tex],[tex=7.286x1.357]Zl8AgQ+y5fHkXSFXHXV35VN9jmm2Yes2VGTjcXxZ6ru6ZBTqPVlBSU/4dIUfaAH0[/tex],[tex=7.643x1.357]Du0xpm+XEihVAwB/EM2ATGKQrfRw5VENHEPXBbc3mK8rkC2tMz/hkkLKzpg9g32l/68WQ9gh7fohn32H2Ua3184icYAcl0WyQzNlQy1Ee5U=[/tex][tex=7.286x1.357]m/euSIzel1jd/R7dhUam08/YoTMnZ84Jr36QZinFEKIQYHwfafpBm9P1x4pYby/RCKqD7fK4oy1Z6INkfMzbYg==[/tex],[tex=11.143x1.357]CeFuG+lZIXAEDzesAF95i89ihPOH3jlOVkBHdweomMyPqygODlxJgB1FnH7rEbFrZ7ZDx2Cp2S1RGQFkX7Cn7XJLUyNmFVOQAeZYZXPNQV79x2c5lqVZJbxCJ9oYXswq[/tex],其中[tex=1.214x1.214]QhT2/HdtDYsWF2BKKz3ziQ==[/tex]的构成是由[tex=2.786x1.5]QJi1+k3CwswPDSl7A53vPAAQoO8Xw3xJqnWQsi3b0f8=[/tex],[tex=2.714x1.5]F2lDOoHRKeTM+XJtV95FsjgRzJ0ooHeOTGEcJigKE84=[/tex], [tex=4.0x1.5]oJKBhDIs8Ig4u104mX1FSSIkB0JPGEX+w7H8zZTkrdo=[/tex]所致。若有子群[tex=0.857x1.0]aPLFPHMGSKDwulHSwLWugg==[/tex]包含一个二阶元[tex=0.857x1.0]8x4jXMFIAZ2p93jtl+14DA==[/tex]及一个三阶元[tex=0.929x1.071]Emuwhfx0zByZ+K3DX88iOQ==[/tex]由直接验证可知[tex=4.786x1.286]QNoLiZOYM6kkcILBWMvDKvm1v/rF+BBiADmRYlApqp1L37FklbgimV2jYQI4Ryvm[/tex],并且[tex=1.714x1.071]4CmxFD5OyIQ7gEBnNit/pAMehQelsaIKXwcU0vrqrlE=[/tex],[tex=1.714x1.071]ATWpsw2jZqS3B8ffGVHO+p0UGYYD1y78T5mTC0DV+WY=[/tex]都是与[tex=0.857x1.0]8x4jXMFIAZ2p93jtl+14DA==[/tex]不同的二阶元,故[tex=1.0x1.214]vIC1ui1s5j6wm/e+z3rn5A==[/tex]中所有三个二阶元[tex=0.929x1.0]GIJA+ElcF8sfFVDzHxfsvg==[/tex],[tex=0.929x1.0]vjXVNjFU7EbPD0ok8JKRfA==[/tex],[tex=2.429x1.214]xDcXAAsdhBRRH9ePgnHRmw==[/tex]。又[tex=2.5x1.071]kb+F1tkyGadGcF6nmVL+vlvoNUjC39hVok7QGThutOm97SqWvhXbOo2Czo7257Sb[/tex]是不同于[tex=0.929x1.071]7hT1oGaOt3ItjD7Cvc0/WA==[/tex]的三阶元,所以[tex=1.0x1.214]vIC1ui1s5j6wm/e+z3rn5A==[/tex]中所有的两个三阶元 [tex=0.929x1.0]GIJA+ElcF8sfFVDzHxfsvg==[/tex], [tex=2.429x1.214]eEJrCtKUu1TlZWmKuzfhRA==[/tex]从而[tex=2.571x1.214]ZVKFQvXi6ivl/k/I8zAiEw==[/tex]。若有子群含有两个二阶元,则同样可证[tex=2.643x1.214]CWFzp+T+SnkN5yG7ebDg2g==[/tex]。故 [tex=1.0x1.214]vIC1ui1s5j6wm/e+z3rn5A==[/tex]的一切子群恰是[tex=1.214x1.214]+qJ4vkt58gzxUz3UM+z5ww==[/tex], [tex=1.214x1.214]Lkp5hpVm9tm9cgUSIXEPLg==[/tex],[tex=1.214x1.214]ba06lGwptRjJwZ2CKYOg1g==[/tex],[tex=1.214x1.214]51w4NzjuTZYAVm7PZZrO4Q==[/tex],[tex=1.214x1.214]QrsUoOgj+1+V02P/noUGfg==[/tex],[tex=1.0x1.214]9PE628d4jwg8J3nqnd5uOg==[/tex]。

    内容

    • 0

      确定[tex=1.0x1.214]V9Mt1ZRiAEgHZ6rtrbIDlA==[/tex]的[tex=2.571x1.214]fCZoGc3eSf6DAExgsAmUsQ==[/tex]子群的个数.

    • 1

      证明: 四元数群[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 的真子群只有 4 个:[p=align:center][tex=7.0x1.357]kjXOzjtuJ+e2aHKc5D5XpYodA1CSUKzFKTgdmEz8mPsgCuj5s26qWLSLVStApFxDOvfjzSQIsUyktsdPQ3U84qhy+LPeP7tq4b4qYXneOOY=[/tex]

    • 2

      对素数 [tex=0.571x1.0]FGGpnaR8m8C48rN8O0c7aw==[/tex] 的不同值, 找出循环群[tex=1.143x1.357]oOz0oH4UpFaaOY7OuGotcg8wtMntQEjCiVorwD1W3R4=[/tex]的所有生成元和所有子群.(1) 7 ;       (2) 11 ;           (3) 13(4) 17 ;     (5) 19 ;           (6) 23 .

    • 3

      证明,群 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 的两个子群的交集也是 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 的子群.

    • 4

      设[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是群,[tex=2.786x1.214]jKZpJsLsrY0OUYjZnnjH6g==[/tex] 是[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的有限子群, 假设[tex=6.786x1.357]D4gw5s8KAcbDDrJsBXNrYA2hZdjmfrJUvOTfe4nOOFsIxysd+i9XkGexdPrfQxlmXpvH+iP19GloyTwhdIPkRnvvXiiAeJl6v7f9cTjWMbQ=[/tex], 证明:[tex=7.5x1.357]Gma+AqI6Zd3NCkICIkEo4VZ5BpbTXGqN6LOiiVd8Ej+g8ccDH3LQ3xKl2IKREw6grfW0+8aYsmpRDPYY/s39PvFjLQ9QMdPyFCjBwq5dr/4=[/tex]