关于正态分布,则下列说法不对的是
A: 若$(X_1,X_2,\cdots,X_n)$服从正态分布,则$(X_1,X_2,\cdots,X_n)$各分量之间相互独立
B: 若$(X_1,X_2,\cdots,X_n)$服从正态分布,则$(X_1,X_2,\cdots,X_n)$各分量之间两两不相关
C: 若$(X_1,X_2,\cdots,X_n)$服从正态分布,则$(X_1,X_2,\cdots,X_n)$的每一个分量服从正态分布
D: 若$(X_1,X_2,\cdots,X_n)$的每一个分量服从正态分布,则$(X_1,X_2,\cdots,X_n)$服从正态分布
A: 若$(X_1,X_2,\cdots,X_n)$服从正态分布,则$(X_1,X_2,\cdots,X_n)$各分量之间相互独立
B: 若$(X_1,X_2,\cdots,X_n)$服从正态分布,则$(X_1,X_2,\cdots,X_n)$各分量之间两两不相关
C: 若$(X_1,X_2,\cdots,X_n)$服从正态分布,则$(X_1,X_2,\cdots,X_n)$的每一个分量服从正态分布
D: 若$(X_1,X_2,\cdots,X_n)$的每一个分量服从正态分布,则$(X_1,X_2,\cdots,X_n)$服从正态分布
举一反三
- (4). 已知总体 \( X \) 服从 \( [0,\lambda ] \) 上的均匀分布( \( \lambda \) 未知) \( X_1 ,X_2,\cdots X_n \) 为 \( X \) 的样本,则()。
- (6). 设总体 \( X \) 服从 \( P(\lambda ) \) 分布,\( X_1 ,X_2 ,\cdots ,X_n \) 为样本,\( \bar {X} \) 为样本均值,则以下结论中错误的是()。
- ${X_1},{X_2},...,{X_n}$,是来自均匀分布 X~U(-a,a)的样本,用最大似然估计法估计参数a为() A: $|{X_1},{X_2},...,{X_n}|$ B: $\max (|{X_1}|,|{X_2}|,...,|{X_n}|)$ C: $\min(|{X_1}|,|{X_2}|,...,|{X_n}|)$ D: $(|{X_1}|+|{X_2}|+...+|{X_n}|)$
- 下列定义的映射中, ___ 不是内积. A: \(\langle x,y \rangle \triangleq xy ,x,y \in \mathbb{R}\) B: \(\langle (x_1,\cdots,x_n),(y_1,\cdots,y_n) \rangle \triangleq \Sigma_{i=1}^{n}x_iy_i,(x_1,\cdots,x_n),(y_1,\cdots,y_n)\in \mathbb{R}^n\) C: \(\langle f,g \rangle \triangleq \int_a^b f(x)g(x)\mathrm{d}x ,f,g \in C([a,b])\)(\([a,b]\)上连续实函数全体) D: \(\langle (x_1,\cdots,x_n),(y_1,\cdots,y_n) \rangle \triangleq \Sigma_{i,j=1}^{n}a_{ij}x_iy_i,(x_1,\cdots,x_n),(y_1,\cdots,y_n)\in \mathbb{R}^n,A = (a_{ij})是实对称方阵\)
- 设总体X~N(μ,σ^2 ),其中μ和σ^2 均未知,X_1,X_2,⋯,X_n 是总体X的一个样本,则样本均值X ̅是μ的无偏估计量.