若f(x)<0成立,则g(x)≤0必须成立;若f(x)<0不成立,则g(x)无限制。引入一个0-1变量y来解决这一逻辑关系:
A: f(x)≥-M(1-y)g(x)≤My
B: f(x)≥-Myg(x)≤My
C: f(x)≥-M(1-y)g(x)≤M(1-y)
D: g(x)≥-M(1-y)f(x)≤My
A: f(x)≥-M(1-y)g(x)≤My
B: f(x)≥-Myg(x)≤My
C: f(x)≥-M(1-y)g(x)≤M(1-y)
D: g(x)≥-M(1-y)f(x)≤My
举一反三
- 若f(x)<0成立,则g(x)≤0必须成立;若f(x)<0不成立,则g(x)无限制。引入一个0-1变量y来解决这一逻辑关系:
- "x F(x,y) → ¬ $y G(x,y)的前束范式 A: $x$y(F(x,m) ®Ø G(t,y)) B: $x∀y(F(x,m) ®Ø G(t,y)) C: ∀x$y(F(x,m) ®Ø G(t,y)) D: ∀x$y(F(x,m) ® ØG(t,y))
- 设f(x),g(x)是恒不为零的可导函数,且f’(x)g(x)-f(x)g’(x)>0,则当0<x<1时()。 A: f(x)g(x)>f(1)g(1) B: f(x)g(x)>f(0)g(0) C: f(x)g(1)<f(1)g(x) D: f(x)g(0)<f(0)g(x)
- 下列推导正确的是 。 A: (1) F(x)→G(x) 前提引入 (2)∃xF(x)→G(x) (1)EG B: (1)F(a)→G(x) 前提引入 (2)∃x(F(x)→G(x)) (1)EG C: (1) F(a)→G(x) 前提引入 (2)∃y(F(y)→G(x)) (1)EG D: (1) F(a)→G(x) 前提引入 (2)∃xF(x)→G(x) (1)EG
- 设f(x),g(x)在区间[a,b]上连续,且g(x)<f(x)<m,则由曲线y=g(x),y=f(x)及直线X一口,X一6所围成的平面区域绕直线y=m旋转一周所得旋转体体积为( ). A: π∫ab[2m—f(x)+g(x)][f(x)一g(x)]dx B: π∫ab[2m一f(x)一g(x)][f(x)一g(x)]dx C: π∫ab[m一f(x)+g(x)][f(x)一g(x)]dx D: π∫ab[m一f(x)一g(x)][f(x)一g(x)]dx