举一反三
- 在半径为 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的球中内接一圆柱,将圆柱的体积 [tex=0.5x0.786]pmD1JbahT9zMRAbBNi045A==[/tex]的和表面积[tex=0.643x1.0]VuDqnB7C7a0HJjCNT6LA5A==[/tex] ( 包括上下底 和侧面积 ) 表示为其高[tex=0.5x1.0]yBR4oiFoTexGaFalQ7m8kg==[/tex]的函数.
- 在半径为[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的球中内接一圆柱,试将圆柱的体积[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex]和表面积[tex=0.643x1.0]VuDqnB7C7a0HJjCNT6LA5A==[/tex](包括上、下底和侧面积)表示为其底半径[tex=0.571x1.286]XubEW9+1+hkJqH7jXe5MrA==[/tex]的函数。
- 在半径为[tex=0.786x1.286]yokTf2U2Z7kNGUXMm22GjQ==[/tex]的球中内接一圆柱,试将圆柱的体积[tex=0.857x1.286]ZpwhzmyivskaH5M1X7ozaQ==[/tex]和表面积[tex=0.714x1.286]yQZEV57S9rHjYvgfJydTyg==[/tex](包括上、下底和侧面积)表示为其高[tex=0.571x1.286]Hz6y44ELFVLLNrLVhO3CQA==[/tex]的函数。
- 在半径为[tex=0.5x0.786]Tg0I1PUwmDJ7uXa9+yiYMA==[/tex]的球内嵌入一个内接圆柱,试将圆柱的体积[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex]表示为其高[tex=0.643x1.0]8+M7OwdUGZPUoOQAaQHP2A==[/tex]的函数,并求此函数的定义域(如图)[img=138x112]1773df929b46eb9.png[/img]
- 在半径为[tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex]的球内嵌入一圆柱,试将圆柱的体积表为高[tex=0.643x1.0]uPu/UBwxTDghY6MHYDLmcA==[/tex]的函数,并确定此函数的定义域。
内容
- 0
求半径为[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex],高为[tex=0.643x1.0]uPu/UBwxTDghY6MHYDLmcA==[/tex]的球冠的表面积.
- 1
设扇形的半径为[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] ,中心角为 [tex=0.643x0.786]hlJJ6/DUY+n2/FE6M2JdRA==[/tex],中心角所对应的弦为 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 将[tex=0.643x0.786]hlJJ6/DUY+n2/FE6M2JdRA==[/tex] 表示为 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]的函数[img=148x177]178badf5d1b4c30.png[/img]
- 2
设半径为 [tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex]的小球 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 的中心在半径为[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 的给定小球的表面上,求 [tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex] 使得小球[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 的表面落在给定小球内部的面积最大.
- 3
设半径为[tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex]的球的球心在半径为 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 的定球面上,试求 [tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex]的值,使得半径为[tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex] 的球的表面位于定球 内部的那一部分的面积取最大值.
- 4
半径为 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的导体球, 带有电荷 [tex=0.857x1.214]to/MrMoO1ux8UhZHnpEvBg==[/tex], 球外有一均匀电介质的同心球壳, 球壳的内外半径 分另别为 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 和 [tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex], 相对介电数为 [tex=0.786x1.0]UGTb3mBG6stcsgF+b5KCcN3tGbJwtAkNMdlfEq83jrg=[/tex], 求:求离球心[tex=0.786x1.0]5SeCOJOzMwSNbX8MGx2Qsg==[/tex] 为[tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex] 处的电势[tex=0.714x1.0]UsTt0JMISB2vmq9eVGUHdA==[/tex]