• 2022-05-30
    在半径为 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的球中内接一圆柱,将圆柱的体积 [tex=0.5x0.786]pmD1JbahT9zMRAbBNi045A==[/tex]的和表面积[tex=0.643x1.0]VuDqnB7C7a0HJjCNT6LA5A==[/tex] ( 包括上下底 和侧面积 ) 表示为;其底半径 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]的函数.
  • 关于[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]的函数时[tex=5.714x1.571]6q7ODJKhRR7K8dL7t6EOSijss3F0Rx5s0x0zLMRDaZA=[/tex]所以 [tex=24.571x2.214]iU+NWuJKsOLmsuj057mM9KyXLhE0rW32sxxwNukNKimAZi1cpYEyPM0O9I9bFOD6Xtn9K0TnOTRMkEnnkEWCI9P/nEacVM2bJKjsCoiIB8g+2HUAXKBkUEmDubPKsSpjxe6pvFJajMj6BBSlbEMt0A==[/tex].

    内容

    • 0

      求半径为[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex],高为[tex=0.643x1.0]uPu/UBwxTDghY6MHYDLmcA==[/tex]的球冠的表面积.

    • 1

      设扇形的半径为[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]  ,中心角为 [tex=0.643x0.786]hlJJ6/DUY+n2/FE6M2JdRA==[/tex],中心角所对应的弦为 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 将[tex=0.643x0.786]hlJJ6/DUY+n2/FE6M2JdRA==[/tex]  表示为 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]的函数[img=148x177]178badf5d1b4c30.png[/img]

    • 2

      设半径为 [tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex]的小球 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 的中心在半径为[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 的给定小球的表面上,求 [tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex] 使得小球[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 的表面落在给定小球内部的面积最大.

    • 3

      设半径为[tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex]的球的球心在半径为 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 的定球面上,试求 [tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex]的值,使得半径为[tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex] 的球的表面位于定球 内部的那一部分的面积取最大值.

    • 4

      半径为 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的导体球, 带有电荷 [tex=0.857x1.214]to/MrMoO1ux8UhZHnpEvBg==[/tex], 球外有一均匀电介质的同心球壳, 球壳的内外半径 分另别为 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 和 [tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex], 相对介电数为 [tex=0.786x1.0]UGTb3mBG6stcsgF+b5KCcN3tGbJwtAkNMdlfEq83jrg=[/tex], 求:求离球心[tex=0.786x1.0]5SeCOJOzMwSNbX8MGx2Qsg==[/tex] 为[tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex] 处的电势[tex=0.714x1.0]UsTt0JMISB2vmq9eVGUHdA==[/tex]