f(x)=ln(x+√(x2-1))的奇偶性
举一反三
- \(\int { { {\sec }^{3}}xdx}\)=( ) A: \(\frac{1}{2}\sec x\cot x-\frac{1}{2}\ln \left| \sec x+\tan x \right|+C\) B: \(\frac{1}{2}\sec x\tan x+\frac{1}{2}\ln \left| \sec x+\tan x \right|+C\) C: \(-\frac{1}{2}\csc x\tan x+\frac{1}{2}\ln \left| \sec x-\cot x \right|+C\) D: \(-\frac{1}{2}\sec x\tan x-\frac{1}{2}\ln \left| \csc x+\tan x \right|+C\)
- f(x)=loga(x+根号x^2+1)的奇偶性
- 求函数$f(x)=x^{\sin x}$的导数 A: $x^{\cos x}$ B: $\sin (x) x^{\sin (x) -1}$ C: $x^{\sin x}(\cos x\ln x+\frac{\sin x}{x})$ D: $x^{\sin x}(\sin x\ln x+\frac{\cos x}{x}$
- 函数$f(x)=\ln \ln x$的导数是( )。 A: $\frac{1}{x}$ B: $\frac{1}{{{x}^{2}}}$ C: $\frac{1}{\ln x}$ D: $\frac{1}{x\ln x}$
- 设函数f(x)满足f(x+Δx)-f(x)=2xf(x)Δx+ο(Δx)(Δx→0),且f(0)=2,则f(1)=____。