某行业利润(由 100 个公司组成)([tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] ) 服从均值为 150 万美元, 标准差为 12 万 美元的正态分布。计算:a. [tex=4.143x1.357]Vz6+hCQgF5IwNkvP/jaOrw==[/tex] 万美元 )。b. [tex=0.643x1.0]WUJ/JHItsc3Bqx1WYNJcrg==[/tex] (80 万美元 [tex=4.786x1.143]X6BwkrzEnYNZ3nDq92dSI6JZ8tDEJm5BpNKdb3eqLX0=[/tex] 万美元)。
举一反三
- 某行业利润(由 100 个公司组成)( [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] ) 服从均值为 150 万美元, 标准差为 12 万 美元的正态分布。若有[tex=1.857x1.143]H7xtpQnGxQRqfSnkpJNrrQ==[/tex]的公司超过某一利润值,求此利润值。
- 设随机变量[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]与[tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex]独立,且[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]服从均值为 1 、标准差(均方差)为[tex=1.429x1.429]4tia4Fmh8qvcSxImPIjBeg==[/tex]的正态分布,而[tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 服从标准正态分布. 试求随机变量[tex=5.429x1.143]huB4ZoJzEVd/0NhytOd1Sg==[/tex]的概率密度函数.
- 对以[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 为自变量, [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 为因变量作线性回归分析时,下列正确的说法是A. 只要求 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]服从正态分布B. 只要求 [tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex] 服从正态分布C. 只要求 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 与 [tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex] 是定量变量D. 要求 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 与 [tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex] 都服从正态分布E. 要求 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 与 [tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex] 服从双变量正态分布
- 设随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 与 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 相互独立,且服从参数为 1 的指数分布. 记 [tex=13.5x1.357]ZrmgIX329+lIMwj+0JP7oX4KmceUiv4NOTdLGvSfjGFY26aIR9qNFK9EJaP3gu/x[/tex] 求[tex=3.857x1.357]t0PsS3YAPSnhTBV9LUFwGQ==[/tex]
- 已知随机变量[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]服从参数为[tex=0.643x1.0]L2Atb4d5eWga5JCvxFtwvQ==[/tex]的泊松分布,[tex=4.857x1.357]F4m+q5YLqz1CpMYzT+XifA==[/tex], 则[tex=2.429x1.357]mcPoV0l2+P69G4jqQuIxgA==[/tex] A: 3 B: 1 C: 2 D: 0